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Abstract
In the last decade, deep learning has made remarkable progress on multi-view clustering (MvC), with existing literature 
adopting a broad target to guide the network learning process, such as minimizing the reconstruction loss. However, despite 
this strategy being effective, it lacks efficiency. Hence, in this paper, we proposed a novel framework, entitled Efficient 
Multi-view Clustering Networks (EMC-Nets), which guarantees the network’s learning efficiency and produces a common 
discriminative representation from multiple sources. Specifically, we developed an alternating process, involving an approxi-
mation and an instruction process, which effectively stimulate the process of multi-view feature fusion to force network to 
learn a discriminative common representation. The approximation process employs a standard clustering algorithm, i.e., 
k-means, to generate pseudo labels corresponding to the current common representation, and then it leverages the pseudo 
labels to force the network to approximate a reasonable cluster distribution. Considering the instruction process, it aims to 
provide a correct learning direction for the approximation process and prevent the network from obtaining trivial solutions. 
Experiment results on four real-world datasets demonstrate that the proposed method outperforms state-of-the-art methods. 
Our source code will be available soon at https://​github.​com/​Guanz​hou-​Ke/​EMC-​Nets.
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Introduction Clustering is a fundamental task in machine 
learning, with most current works studying the single-view 
clustering case. However, utilizing a single view does not 
thoroughly represent the original object features. In fact, 
in real-world scenarios, data are frequently represented as 
multiple views or modalities. Given the diversity of fea-
ture extraction methods, these different views are usually 
governed by various statistical properties. For instance, an 
image may be characterized by various descriptors, such 
as SIFT [1], histograms of oriented gradients (HoG) [2], 
and local binary pattern (LBP) [3]. While in Online Video 
Analysis (OVA), the video can be split into visual and audio 
signals. Nevertheless, it is not easy to directly transfer a sin-
gle view cluster to a multi-view setup, with the significant 
concern attributed to two aspects [4]: consistency and com-
plementary information between the views. This is because 
simply concatenating each view’s information instead of 
utilizing specific technology to fuse the views is likely to 

introduce additional noise and reduce the generalization 
capability. Hence, numerous multi-view clustering methods 
have been proposed exploring the common representation 
among multiple sources.

In the past two decades, most multi-view clustering algo-
rithms focus on exploring consistency representation among 
views. A unified representation is of vital importance for 
downstream tasks, e.g., Anomaly Detection or OVA. Exist-
ing methods involve applying multi-view data utilizing a 
non-negative matrix factorization scheme [5] to extract the 
common representation factor among multiple views by 
exploiting joint matrix factorization and normalization pro-
cedures. Binary Multi-View Clustering (BMVC) [6] obtains 
the common binary code space of large-scale multi-view 
images by unifying a compact collaborative discrete repre-
sentation and a binary clustering structure. BMVC can com-
plete large-scale image clustering while ensuring efficiency 
and low computing resource requirements. However, its 
performance excessively relies on the initialization param-
eters employed. To solve partial parameter dependence, [7] 
proposes a novel learning paradigm, namely geometric con-
sistency (GC) and cluster assignment consistency. GC aims 
to learn data connection, i.e., data points that belong to the 
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same cluster and minimize the discrepancy of pairwise con-
nection among different views. Although [7] automatically 
determines the clustering size, it cannot effectively extract 
the non-linear and complex data information, and the data 
size limits its clustering capacity. Another representative 
way of extracting common representation is the Canonical 
Correlation Analysis (CCA) [8], which explores the statisti-
cal properties between two views, searching for two projec-
tions to map the two views onto a low-dimensional common 
representation where the linear correlation between these 
two views is maximized.

However, CCA is not able to explore the non-linear corre-
lation of complex data. Kernel CCA (KCCA) [9] introduces 
kernel techniques to overcome the linear limitation. Nev-
ertheless, different views require utilizing different kernels 
that require expert knowledge. With the recent flourish of 
deep learning, neural network architecture is widely used to 
extract non-linear features among different views automati-
cally. Deep Canonical Correlation Analysis (DCCA) [10] is 
a deep network-based extension algorithm of CCA. It lev-
erages neural networks to extract non-linear features from 
two views, then it applies a linear CCA layer to project these 
features onto a low-dimensional space. Furthermore, in [11], 
the researchers combine deep learning and matrix factori-
zation to solve the MvC problem. This strategy learns the 
hierarchical semantics of multi-view data similarly to a deep 
neural network (DNN) while providing the class informa-
tion in the last layer by capturing the geometric structure of 
each view. A limitation of this method is the high computa-
tion resource demand when meeting large-scale data. An 
alternative solution is proposed in [12], where the subspace 
is clustered, and DNN is exploited to develop an affinity 
fusion layer that explores shared affinity across all the views. 
A downside of this technique is imposing a huge parameter 
matrix to maintaining the affinity matrix.

A recent study [13] argued that only extracting corre-
lation (consistence) and ignoring independence (comple-
mentarity) cannot accurately measure a real object, i.e., 
a good (comprehensive) common representation should 
contain as much information as possible about the con-
sistency among views and also should contain unique 
information about different views. Comprehensive repre-
sentation enhances the model’s robustness because mod-
els with different tasks and preferences can flexibly learn 
the required high-level semantics from comprehensive 
representation. In contrast, it is difficult to explore the 
comprehensive semantics with previous methods, which 
only extract consistent information. The work of [14] inte-
grates the Locally Linear Embedding (LLE) and Laplacian 
EigenMaps (LE) schemes to extract the potential compre-
hensive representation among multiple views and achieve 
the migration from the view-space to the task-space. 
Literature in [15, 16] has made remarkable progress in 

exploring comprehensive representation on multiple views 
by employing the reconstruction function as the main body 
of the objective function and adopt Generative Adversarial 
Networks (GANs) [17] as a constraint to force the model 
learning a discriminative common representation.

Although the existing methods can achieve extremely 
high performance with additional constraints, they are still 
based on a broad learning target, i.e., reconstruction, with 
the latter is a vital learning target for unsupervised learning. 
However, the lack of a clear learning direction, e.g., labels 
in supervised learning, provides a reconstruction function 
that is effective but inefficient as an unsupervised loss (the 
reconstruction weaknesses are presented in Section 3.3. To 
address this issue, we extend the pseudo label generation 
technique of [18, 19] and provide a clear target for the net-
work to learn discriminative MvC features. Furthermore, we 
highlight that pseudo label generation with low-quality ini-
tialization degrades generalization performance, as it lacks 
providing the correct direction generation and imposes an 
error correction mechanism during label generation. This 
work introduces the reconstruction function as the instructor 
of learning direction and an error correction mechanism to 
avoid a trivial pseudo label generation solution. Therefore, 
we propose the Efficient Multi-view Clustering Networks 
(EMC-Nets), which aims to efficiently guarantee the effi-
ciency of network learning and produce a discriminative 
common representation. Concretely, as shown in Fig. 1, the 
common representation can be extracted from data originat-
ing from different views utilizing a feature extractor. The 
latter comprises the view-specific encoder and the attention 
fusion layer, which consists of the standard transformer 
encoder [20]. Then, the clustering module and supervisor 
module leverage common representation to generate the 
pseudo labels and reconstruct the corresponding views, 
respectively.

The essential advantage of our model lies in the simple 
network architecture and alternating training process. Con-
sidering the training dynamics, the EMC-Nets involve two 
main processes: the instruction process and the approxima-
tion process. The instruction process establishes a correct 
direction of generation pseudo labels corresponding to the 
current common representation. The approximation process 
generates pseudo labels to force the network to approximate 
a reasonable cluster distribution. The main contributions of 
this paper are summarized as follows: 

1.	 We propose a novel unsupervised multi-view cluster-
ing framework entitled Efficient Multi-view Clustering 
Networks (EMC-Nets), which efficiently integrates mul-
tiple views into a discriminative common representation 
and flexibly utilizes different clustering algorithms such 
as k-means or spectral clustering to adapt to real task 
requirements.



Efficient multi‑view clustering networks﻿	

1 3

2.	 We develop a robust alternating training process, involv-
ing an approximation process and an instruction process, 
to stimulate the process of multi-view feature fusion to 
obtain a comprehensive common representation. The 
instruction process, which adopts a reconstruction strat-
egy, aims to generate pseudo labels. The approxima-
tion process uses pseudo labels to improve the feature 
extractor. These two processes are naturally complemen-
tary, ensuring the efficiency of unsupervised learning. 
Experimental results show that the proposed instruction 
process can effectively improve the quality of pseudo 
labels compared to [19].

3.	 We conduct experiments on four real-world datasets to 
measure the performance and convergence of the alter-
nating process. Our experiments demonstrate that after 
a period of oscillation, the two processes are compatible 
with each other until they converge. In the comparative 
experiment, the representation learned by EMC-Nets 
outperforms state-of-the-art methods in terms of per-
formance and effectiveness.

The remainder of the paper is as follows. Section 2 reviews 
related work, including self-supervised learning and multi-
view clustering algorithms. Section 3 introduces the details 
of the proposed framework, while Section 4 presents the 
experimental results demonstrating the effectiveness and 

superiority of EMC-Nets against current methods on four 
real-world datasets. Finally, Section 5 discusses our findings 
and Section 6 concludes this work.

1 � Related work

This section shortly introduces related works to pseudo label 
generation and multi-view clustering. Given that our work 
extends [19] to facilitate multi-view clustering. Section 2.1 
highlights the differences between [19] and introduces the 
suggested EMC-Nets. Additionally, we also depict the dif-
ference between our work and current solutions in the field 
of MvC.

1.1 � Pseudo label generation

Pseudo label generation is a vital sub-task in self-supervised 
learning [21]. that is widely used in the field of single-view 
clustering [18, 19, 22]. Simply expanding solutions from 
single-view to multi-view does not pose optimum clustering 
performance, while to the best of our knowledge, a limited 
number of papers consider a pseudo label generation tech-
nique to address the MvC problem. Given this research gap, 
we extend [19] to facilitate an MvC solution. The method 
in [19] utilizes batch k-means to iteratively generate the 

Fig. 1   Illustration of the Efficient Multi-view Clustering 
Network(EMC-Nets). EMC-Nets consists of the feature extrac-
tor, supervisor, and clustering modules. The feature extractor con-
sists of V view-specific encoder networks E and an attention fusion 

layer. It outputs a specific low-dimensional standard representation Z 
that reconstructs each view in the supervisor module and generates 
pseudo labels through the clustering module. These pseudo labels are 
used to further enhance the feature extractor by the classifier.
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suitable pseudo label and then treats these labels to enhance 
the feature extractor similar to supervised learning. Manag-
ing an efficient pseudo label generation affords significant 
progress in unsupervised visual representation. However, 
[19] suffers from the pseudo label generation quality, and 
specifically, if the quality is poor, then the features learned 
later will also be poor. Due to the characteristics of the gra-
dient descent algorithm, this is an irreparable issue in [19]. 
To address this issue, we introduce the supervisor module 
to reconstruct the original input and provide the correct 
direction during the pseudo labels learning process. Cur-
rent literature offers some similar work to ours. For exam-
ple, [18] designs dynamic memory modules to solve the 
inferior clustering assignment problem. This method stores 
the pseudo labels, features, and clustering centroids of each 
batch, and then the network perceives the global information 
to update the parameters and re-assign the clustering cen-
troids. Despite this being a viable pseudo-label generation 
solution, the two additional memory modules impose a sub-
stantial computational burden. The work of [22] suggests a 
structure and attribute information fusion module to address 
graph clustering. It leverages the fusion graph information 
to generate target distribution instead of pseudo labels, but 
this method only deals with the graph clustering problem 
lacking generalization to other data forms, i.e., image and 
text. In contrast, the suggested EMC-Nets can theoretically 
deal with any form of data.

1.2 � Multi‑view clustering

The MvC algorithm taxonomy involves two categories: tra-
ditional methods and deep learning methods. Traditional 
MvC methods rely on statistical theory, e.g., multi-kernel 
learning methods [23, 24], where the characteristics of dif-
ferent views can be non-linearly mapped into a common 
representation. Nevertheless, these methods require select-
ing the appropriate kernel for each view carefully. Subspace-
based methods [25–27] project the multi-view data into a 
low-dimensional shared subspace to obtain the standard rep-
resentation. There are also methods exploiting non-negative 
matrix factorization [5] and graph-based models [28]. These 
statistical models have a common drawback, as they cannot 
extract complex structures within the data. Therefore, there 
have been many deep methods combined with traditional 
methods, such as [10, 12, 29]. These extract higher semantic 
features through neural networks and then apply on these 
features statistical models to extract a common represen-
tation. In recent years, complete deep methods have been 
proposed, such as [15, 16]. These methods have a more 
vital ability to express a data structure, obtaining higher 
performance on many benchmark datasets. These methods 
consider the reconstruction function as the main body of 
the objective function, allowing the network to understand 

the data. However, as discussed in Section 3.3, the learn-
ing range of the reconstruction function is too broad, and 
thus these methods utilize other constraints, e.g., adversarial 
constraints, to limit the learning range of the network. This 
strategy enlarges the model size, prohibiting practical appli-
cations. Hence, in this work, we reconsider network learn-
ing and propose a lightweight and efficient MvC framework 
described in detail in the next section.

2 � Method

Consider the problem of clustering a set of n data points con-
sisting of V views D = {�1,�2, ...,�V} into c clusters, where 
�

v ∈ ℝ
dv×n denotes the samples of the dimension dv from the 

v-th views. In this work, we suggest an efficient deep multi-
view clustering network to solve the aforementioned cluster-
ing problem. This section introduces the feature extractor 
and attention fusion layer and then depicts the clustering 
module and the process of pseudo labels generation. Next, 
we introduce the supervisor module and demonstrate its abil-
ity to avoid trivial pseudo-label generation solutions. Finally, 
we describe the proposed loss function and training proce-
dure of EMC-Nets.

2.1 � Feature extractor

This subsection introduces the feature extractor component 
and describes in detail the proposed attention fusion mecha-
nism. Due to the diversity of the different views, the feature 
extractor, consisting of V view-specific encoder networks, 
transforms the data into low-dimensional latent space, while 
an attention [20] fusion layer fuses each specific latent to the 
joint representation (Fig. 1). Firstly, for the v-th view, we 
handle the encoder to extract the corresponding representa-
tion as �v = Ev(�

v;�v
e
) , where Ev(⋅) refers to the v-th view’s 

encoding network parameterized by �v
e
 . We utilize the fully-

connected layer within the encoder’s structure and then, we 
obtain H̄ by concatenating each Hv as presented below:

where [⋅] denotes the concatenation operator.
The attention fusion layer is designed to fuse diverse 

information from the various views with the fusion mecha-
nism presented in Fig. 2. According to the above strategy, 
we aim for the joint representation Z to consider the com-
prehensive information from each view. Based on this con-
cept, we exploit the attention mechanism [20] to enhance 
each feature in H̄ by using other features. Thus, first, we use 
[WQ,WK ,WV ]H̄

T to obtain the Query Q, the Key K, and the 
Value V matrix, respectively. Then, the similarity matrix of 
Q and K are calculated through the softmax

�

QKT

√

d

�

 , where d 

(1)H̄ = [H1,H2, ...,Hv]



Efficient multi‑view clustering networks﻿	

1 3

is the feature dimension of H̄ . We believe that the similarity 
matrix is an essential factor for the success of the attention 
fusion method because, intuitively, it can provide a sufficient 
basis for each feature during the information fusion process. 
Next, we assign the information to be fused according to the 
similarity matrix utilizing softmax

�

QKT

√

d

�

V  . Finally, the 
fused information is added to the original input feature H̄ , 
and the output is sent to the fully-connected layer to obtain 
the comprehensive representation Z. For convenience, we 
denote the fusion process as the following formulas:

where Attn(⋅) is a standard TransformerEncoder [20], as 
shown in Fig. 2, parameterized by �

�
 . Finally, the standard 

representation Z is input to the clustering module and super-
visor module, respectively.

2.2 � Clustering module

This part discusses how to iteratively group the standard rep-
resentation Z and leverage the pseudo labels to enhance the 
feature extractor. In [19], the authors employ standard cluster-
ing algorithms, such as k-means, to generate pseudo labels for 
each batch sample in the current feature space. Additionally, 

(2)Z = Attn(H̄;𝜃
𝛼
)

depending on the data properties, the clustering method can 
be replaced with other more appropriate clustering methods, 
such as spectral clustering. In this work, we extend the idea of 
generating pseudo labels [19] into the MvC domain, as [19] 
only deals with a single-view setup, and simply applying it on 
MvC does not pose an optimum solution (as discussed in Sec-
tion 2.1). However, by exploiting the standard representation 
Z introduced in Section 3.1, it is feasible to extend the concept 
of [19] to MvC utilizing the following formula:

where || ⋅ ||F is the Frobenius norm, C represents a d × k 
centroid matrix, and yi is the clustering assignment to each 
sample. By solving (3), we can cluster each common repre-
sentation Zi into k groups. After that, we obtain a series of 
optimal assignments (y∗

i
)i≤N and a centroid matrix C∗ , which. 

These are then used as pseudo labels.
Considering a traditional supervised classification prob-

lem, the network G(⋅) can be generally divided into two 
parts: the feature extractor and the classifier. The para-
metrized classifier predicts the correct labels on top of the 

(3)

min
C∈ℝd×k

1

N

N
∑

i=1

min
yi∈{0,1}

k
||Zi − Cyi

||

2

F
such that yT

i
1k = 1

Fig. 2   Illustration of the 
attention fusion mechanism. For 
convenience, we demonstrate 
that the input is one sample with 
d-dimensional feature. Note: we 
use a vector to demonstrate the 
attention fusion process in this 
example, but in practice, the 
H̄,Q,K,V ,Z represent a matrix. 
Hence, we adopt softmax(QK

T

√

d
)V  

as the attention fusion core 
equation
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feature extractor, while the parameters �g of the network G(⋅) 
is learned by optimizing the following problem:

where 𝓁(⋅) is a logistic loss, also known as the negative log-
softmax function. Equation (5) is a straightforward metric 
to measure the distinction between the network’s prediction 
and the ground truth distribution. In [19], the author applies 
(3) and (5) as an unsupervised network joint learning goal, 
which in this paper we extend to the case of MvC. There-
fore, our method defines as a reconstruction function a more 
precise learning objective than the broad objective function 
of [19], defined as:

where G(⋅) represents a linear classification neural network 
and yi are the pseudo labels calculated by (3). Also, (5) is 
minimized using mini-batch stochastic gradient descent [30] 
and backpropagation to compute the gradient.

In short, EMC-Nets leverage the common representation 
Z to iteratively produce pseudo labels using (3), and updat-
ing the parameters of Ev(⋅;�

v
e
) by predicting these pseudo 

labels using (5). However, this procedure is prone to trivial 
solutions, and thus in the following section, we describe 
how to avoid them.

2.3 � Supervisor module

Although training the network with pseudo labels enhances 
the network’s feature learning efficiency, it highly depends 
on the quality of pseudo labels. If their initial quality is poor, 
then the features learned later will also be poor. Therefore, 
in this part, we first discuss two trivial solutions that are 
often criticized: the unsupervised method with reconstruc-
tion being the primary learning goal is easy to learn trivial 
knowledge, and the pseudo label generation quality is highly 

(4)min
�g

1

N

N
∑

i=1

�(G(xi), yi)

(5)Lcls = min
�v
e
,�g,��

1

N

N
∑

i=1

�(G(Z), yi)

dependent on the initial value. Then we explain how EMC-
Nets solves these issues.

Reconstruction loss is one of the mainstream train-
ing indicators in unsupervised learning. It compresses the 
original information into a bottleneck representation and 
leverages these representations to reconstruct the original 
information. Due to its conceptual simplicity, reconstruc-
tion has a wide range of applications in networks utilizing 
an Auto-encoder [31] as the backbone. It can effectively 
measure the difference between the network’s output and 
input but neglects the local structure causing the network to 
provide a trivial solution. For example, in Fig. 3, digit 8 in 
some parts is modified to simulate network reconstruction. 
We found that some modifications such as Fig. 3(c) are not 
crucial for recognition, but some changes, such as Fig. 3(b), 
may directly lead to indistinguishability. Although humans 
or some state-of-the-art classifiers can easily identify those 
insignificant changes and give the correct answer, this is 
challenging for the reconstruction loss. Therefore, for MvC 
type of problems, some methods introduce additional net-
work modules to add constraints, i.e., [15, 16] use adver-
sarial loss [17] as reconstruction constraints. However, the 
ability of these constraints to guide the network is limited, 
and lack of accurate guidance.

On the other hand, (5) indicates that a likelihood function 
can maximize the pseudo label distribution and the current 
cluster distribution. Therefore, if the initial pseudo labels 
contain many wrong labels, (5) will continue to magnify this 
error. As the number of training instances increases, the net-
work will continue to accumulate error knowledge and even-
tually lead to an inferior generalization performance. This 
is caused due to, first, utilizing batch training methods pro-
hibits the network from perceiving global information, and 
second, there is no additional error correction mechanism.

Therefore, we comprehensively consider the advantages 
and disadvantages of reconstruction and pseudo label gen-
eration and design a supervisor module combined with an 
alternate training strategy. The supervisor module is com-
prises V view-specific decoder networks, which considers 
the standard representation Z as input and reconstructs it 

Fig. 3   Illustration of the limitation of reconstruction loss. (a) is the 
digit 8 from MNIST. In order to simplify the problem, we processed 
the image into a binary pixel map. We removed 6 pixels from (b) and 

added 6 pixels in (c). Obviously, (b) is not a recognized digit 8, but 
(c) can still be identified. Nevertheless, (b) and (c) have the same 
error in reconstruction loss
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into the V original views. This mapping could be represented 
as X̄v = Dv(Z;𝜃

v
d
) , where Dv refers to v-th view’s decoding 

network parameterized by �v
d
 . Hence, we describe the loss 

function of supervisor module as:

Overall, we believe that these two modules (clustering and 
supervisor) can naturally overcome the shortcomings of 
each other. Concretely, the clustering module (or pseudo 
labels) can provide explicit learning goals for the network 
and is more efficient in learning discernible features than 
the traditional unsupervised methods. On the other hand, 
the supervisor module (or reconstruction) can provide the 
correct direction to the clustering module and generate rela-
tively correct pseudo labels.

2.4 � Training procedure

This subsection discusses the EMC-Net training strategy, 
i.e., alternating process. In general, this alternating process 
is divided into two sub-processes: the approximation (led by 
a clustering module) and the instruction (led by a supervisor 
module). Finally, we discuss the convergence conditions of 
the alternating process and present the detailed training pro-
cedure (Algorithm 1). Concretely, we depict the alternating 
process as follows: 

1.	 Approximation process: This process utilizes the 
pseudo labels generated by the clustering module to 
train the feature extractor, and then the network param-
eters are updated through (5). This strategy provides the 
network an explicit learning direction and improves the 

(6)Lrecon = min
�v
e
,�v

d
,�

�

V
∑

v=1

||Dv(Z),X
v
||

2

F

clustering performance by fitting pseudo labels to the 
greatest extent.

2.	 Instruction process: In this process, reconstruction 
is adopted as a network learning target to prevent the 
network from being trapped in a trivial solution. The 
instruction process updates the parameters of the feature 
extractor and the supervisor module through (6) and pro-
vides an appropriate generation direction for the cluster 
assignment to generate the corresponding pseudo labels 
based on the joint representation Z learned by the cur-
rent network. The clustering module is quite flexible in 
terms of the clustering algorithm that can be utilized. 
To simplify the problem, for this module, we employ 
k-means as the clustering algorithm.

As shown in Algorithms1, we initially execute the instruc-
tion process to provide a good initialization for the network, 
and then the clustering module generates the pseudo labels 
to enhance the feature extractor through an approxima-
tion process. To evaluate the convergence capability of the 
alternating process, we define a general convergence con-
dition, i.e., when the mutual information ratio of pseudo 
labels of any two continuous time-stamps is close enough 
(the difference is a small value � ) and remains unchanged 
for a while, we consider that convergence is reached. We 
provide a method to verify the convergence of the alternat-
ing process in practice during the alternating process, i.e., 
perform adequate training epochs and record the number of 
times that the mutual information ratio is continuously less 
than g. If this number reaches a certain threshold (default is 
10), we consider that the alternate process has converged. 
These processes are performed alternately until convergence, 
and ultimately we obtain the optimal clustering result, i.e., 
pseudo labels.
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3 � Experiments

Several experiments are conducted to evaluate the perfor-
mance of EMC-Nets on various datasets. Specifically, firstly, 
we analyze the clustering performance of EMC-Nets and 
challenge it against current algorithms on real datasets. The 
comparative experiments on different dataset scales utiliz-
ing statistical and depth methods indicated that EMC-Nets 
perform better on pure visual tasks than hybrid view tasks. 
Furthermore, we study the convergence of EMC-Nets on dif-
ferent datasets and the impact of different hyper-parameters 
on clustering performance. Finally, we study the impact of 
different fusion methods and independent approximation and 
instruction processes on the final performance. The corre-
sponding results highlight that the attention-based approach 
is better than other fusion strategies. However, the most criti-
cal finding is that the alternating process is more appealing 
than the independent process through the split experiment. 
To enhance readability, the clustering results of EMC-Nets 
are visualized.

3.1 � Experimental Settings

This subsection describes four multi-view datasets, the 
evaluation metrics and the comparison methods utilized, 
the implementation details, and the parameter settings for 
the algorithms employed during the trials. In particular, to 
distinguish the methods of different characteristics, the com-
petitor methods are divided into three categories, as shown 
in Table 3, i.e., single-view clustering, traditional statisti-
cal multi-view algorithms, and based on deep learning. The 
proposed EMC-Nets belong to the last category.

3.1.1 � Datasets

To demonstrate the performance of the proposed framework, 
all methods are challenged on four multi-view benchmark 
datasets divided into three categories based on their data 
type. A brief dataset description is presented in Table 1. 

1.	 Image dataset: Handwritten numerals (HW) dataset [32] 
consists of 2,000 samples from 0 to 9 ten digit classes 
and each class has 200 samples. In our experiment, 

we define view-1 being the 76 Fourier coefficients and 
view-2 being the 240 pixel averages in 2 × 3 windows; 
MNIST is a large-scale and widely-used benchmark 
dataset consisting of 70,000 handwritten digit images 
with 28 × 28 pixels. We adopt its advanced version pro-
vided by [33]. In our experiment, we treat view 1 as the 
original gray images and view 2 as the corresponding 
digit edge.

2.	 Image and text dataset: Berkeley Drosophila Genome 
Project (BDGP) [34] consists of 2, 500 data points about 
drosophila embryos belonging to 5 categories. Each data 
point is represented by a 1,750-D visual vector and a 
79-D textual feature vector. We set the visual data as 
view 1 and textual data as view 2 in our experiment.

3.	 Video dataset: The Columbia Consumer Video (CCV) 
[35] dataset consists of 9, 317 YouTube videos with 20 
diverse semantic categories. In our experiment, we adopt 
the available subset 6, 773 videos of CCV, along with 
three hand-crafted features: STIP features with 5, 000 
dimensional Bag-of-Words (BoWs) representation, SIFT 
features extracted every two seconds with 5, 000 dimen-
sional BoWs representation, and MFCC features with 
4, 000 dimensional BoWs representation.

3.1.2 � Evaluation metrics

The clustering performance is measured using three stand-
ard evaluation matrices, i.e., clustering Accuracy (ACC), 
Normalized Mutual Information (NMI), and Purity. We 
present these metrics as shown in (7), (8), and (9), respec-
tively, where Y represents ground-truth labels and C denotes 
clustering labels; �(⋅, ⋅) is the indicator function; map(⋅) is 
the mapping function corresponding to the best one-to-one 
assignment of clusters to labels implemented by the Hungar-
ian algorithm [48]; I(⋅;⋅) and H(⋅) represent mutual informa-
tion and entropy functionals, respectively. For further details 
on these evaluation metrics, the reader is referred to [36]. It 
should be noted that the validation process of the clustering 
methods involves only the cases where ground truth labels 
are available.

(7)ACC =

∑n

i=1
�(yi,map(ci))

n

(8)NMI =
I(Y;C)

1

2
(H(Y) + H(C))

(9)Purity =
1

N

∑

k

max
j
|Yk ∩ Cj|

Table 1   Dataset Description

Dataset type #samples #view #class

BDGP image-text 2,500 2 5
HW image 2,000 6 10
CCV video 6,773 3 20
MNIST image 70,000 2 10
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3.1.3 � Comparison models

The performance of the suggested EMC-Nets is challenged 
against: 

1.	 Single-view Clustering (SC). The standard spectral clus-
tering algorithm [37] is conducted on each view and the 
concatenated view.

2.	 Traditional (Statistics) Methods. 1) Robust Multi-view 
K-Means Clustering (RMKMC) [38] searches a consen-
sus cluster indicator across multiple views. 2) Robust 
Multi-view Spectral Clustering (RMSC) [39] recovers 
a latent transition probability matrix from pair-wise 
similarity matrices of each view through a low-rank 
constraint. 3) Multiview Consensus Graph Clustering 
(MCGC) [40] learns a consensus graph with minimiz-
ing disagreement between different views and constrain-
ing the rank of the Laplacian matrix. 4) Auto-weighted 
Multiple Graph Learning (AMGL) [41] utilizes every 
single view to construct a graph and learns an optimal 
weight for each graph automatically with parameter-free. 
5) Cross-view Matching Clustering (COMIC) [7] gener-
ates a view-specific connection graph to obtain view-
consensus information, automatically measuring the 
cluster size. 6) Binary Multi-View Clustering (BMVC) 
[6] leverages the unifying compact collaborative discrete 
representation and binary clustering structure to obtain 
the common binary representation.

3.	 Deep Learning Methods. 1) Deep Canonical Correla-
tion Analysis (DCCA) [10] learns nonlinear transfor-
mations of two views such that the representation are 
highly linearly correlated. 2) Deep Canonically Cor-
related Auto-encoders (DCCAE) [29] is an advanced 
version of DCCA. . It uses two auto-encoders to replace 
the fully connected network in DCCA and optimizes 
the canonical correlation between the learned bot-
tleneck representations and the reconstruction errors 
of the auto-encoders. 3) Deep Multi-modal Subspace 
Clustering (DMSC) [12] presents convolutional neural 
network-based approaches for unsupervised multi-modal 
subspace clustering. 4) Deep Adversarial Multi-view 
Clustering (DAMC) [15] employs shared deep auto-
encoders to learn latent representations across multiple 
views while leveraging adversarial networks to capture 
data distribution further. 5) Multi-View Clustering via 
Deep Matrix Factorization (MCDMF) [11] combines 
deep learning and matrix factorization to explore the 
hierarchical semantics of multi-view data and output 
the class information in the last layer by capturing the 
geometric structure in each view.

To compare the divergence of the above algorithms based 
on their type, these are divided into three categories, namely 

single-view clustering methods, multi-view clustering meth-
ods based on statistical models, and deep learning models, 
as shown in Table 3. We verify the performance of all algo-
rithms on medium-scale datasets, while for the large-scale 
datasets evaluation, we involve only the algorithms that meet 
the requirements shown in Table 4.

3.1.4 � Implementation details and hyper‑parameters 
setting

The proposed network architecture and the competitor 
non-linear methods are trained on the PyTorch platform, 
running on CentOS Linux 7 utilizing an NVIDIA Quadro 
P5000 Graphics Processing Unit (GPU) with 16 GB mem-
ory size. The experiments utilize the SGD solver [30] with 
a batch size of 64, and all activation functions are Recti-
fied Linear Units (ReLU) [42]. All networks are trained 
with a learning rate of 10−3 , momentum 0.9, and weight 
decay 5 × 10−4 . The network weights are initialized utiliz-
ing the Xavier initialization [43] method, and to prevent 
overfitting, Dropout [44] is used to improve the network’s 
generalization, with the random probability set to 0.5. By 
default, the instruction process steps are set to r = 3 and the 
approximation process step to t = 2 . We run EMC-Nets for 
10 runs and report the accuracy of the run with the lowest 
clustering loss. For the post-processing algorithms (DCCA, 
DCCAE, and DMSC), we run our method 20 times and 
report the result with the minimum loss. Since CCA-based 
methods, i.e., DCCA and DCCAE, can only deal with two 
views, the best two views are chosen on the CCV dataset 
according to their performance. The details on the proposed 
network architecture are given in the Appendix 1.

For a fair comparison, we uniformly use the grid search 
strategy to find the optimal hyper-parameters for all sta-
tistical methods, while for the deep learning methods, we 

Table 2   Hyper-parameters selection for all competitors

Model Search range Step Best on (BDGP, 
HW, CCV, MNIST)

RMKMC � ∈ [0.1, 2] 0.1 (0.5, 0.5, 0.2, -)
RMSC � ∈ [10−3, 1] 0.001 (0.01, 0.01, 0.005, -)
MCGC​ � ∈ [0, 102] 0.1 (0.6, 0.6, 10, -)
COMIC – –
BMCV � , � ∈ [10−6, 10−3], 10−6, � = 10−4, � = 10−5,

�, r ∈ [0, 10] 0.1 � = 0.5, r = 5

AMGL – –
DCCA​ � ∈ [10−4, 0.1] 10−4 0.001
DCCAE � ∈ [10−4, 0.1] 10−4 0.001
DMSC �1, �2 ∈ [−10, 10] 1 �1 = �2 = 1

MCDMF � , � ∈ [10−2, 1] 0.01 � = 0.5, � = 0.1

DAMC �1, �2 ∈ [−5, 5] 1 �1 = �2 = 1
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exploit their default values. However, the key to the deep 
learning model is the weights initialization and the dimen-
sionality of the joint representation. Hence, the network is 
initialized at five different random points, and the average 
value is considered the comparison baseline with the same 
dimensionality being preserved for a standard representa-
tion among all deep learning-based methods. The detail on 
the hyper-parameters selection is presented in Table 2.

3.2 � Experimental results

The reported results on the four benchmark datasets are 
presented in Table 3. The findings are discussed from the 
aspect of comparing the methods against baseline tech-
niques and clustering on a large-scale dataset.

3.2.1 � Compared with baselines

The clustering performance of multi-view clustering meth-
ods (including statistical methods and deep methods) is sig-
nificantly better than SC (based on only one or more view 

information), which indicates that it is necessary to fuse 
multi-view information for clustering. Compared with the 
statistical models, EMC-Nets has apparent advantages in 
the ACC, NMI, and Purity indicators. The principal reason 
is that these models utilize shallow and linear embedding 
functions and thus are unable to obtain complex information 
from the data. Even if compared with the deep methods, our 
framework can still achieve better results. Additionally, our 
framework is lighter than DAMC. Overall, we associate the 
success of EMC-Nets with the more precise guidance of the 
network during the training process.

3.2.2 � Clustering on Large‑scale Dataset

To show that our approach is suitable for the large-scale data-
set, we have conducted the experiments on the MNIST data-
set. The challenged methods include four deep models, i.e., 
DCCA, DCCAE, DMSC, and DAMC. The results indicate that 
DMSC is not f scalable on this dataset due to its memory limi-
tation, with the corresponding results presented in Table 4. The 
proposed approach manages a performance improvement of 
6.9%(72.2 − 65.3) , 7.6%(67.0 − 59.4) and 10.3%(76.2 − 65.9) 
against the second-best method in terms of ACC, NMI, and 
Purity metrics, respectively, demonstrating the effectiveness of 
the proposed approach on large-scale datasets.

According to the previous analysis, we found that EMC-
Nets performs very well when processing pure visual tasks 
and can adapt to high-dimensional large-scale data. How-
ever, on some mixed views, such as CCV, the results are 
poor because the comprehensive information that EMC-Nets 
can capture is still limited. For example, the mixed features 
of audio, video, and subtitles are related in space and time 

Table 3   Clustering results on 
BDGP, HW and CCV datasets

Bold entries signify the best performance

Categories Dataset BDGP HW CCV

Metrics ACC​ NMI Purity ACC​ NMI Purity ACC​ NMI Purity

Single-view SCv=1 49.4 28.6 49.4 68.2 66.3 69.9 10.7 0.6 10.7
Clustering SCv=2 94.1 89.4 94.3 69.3 68.7 69.1 20.3 18.6 21.0

SCv=3 – – – – – – 10.8 0.82 11.3
SCcon 53.4 35.4 53.4 71.8 69.6 71.8 10.6 0.6 10.8

Statistic RMKMC 81.3 79.5 80.9 79.8 77.4 81.6 17.6 16.5 18.6
Multi-view RMSC 60.2 56.3 60.2 73.7 70.8 76.3 21.6 18.1 24.1
Clustering MCGC​ 89.7 88.1 91.4 77.3 74.6 78.1 22.4 21.6 24.0

AMGL 95.3 90.4 95.3 80.1 79.1 82.0 11.2 1.4 11.7
COMIC 83.1 75.9 84.2 71.2 66.8 72.5 19.8 17.3 19.8

Deep DCCA​ 57.8 40.9 57.8 81.4 78.1 81.4 20.7 15.9 21.9
Multi-view DCCAE 45.3 39.1 44.1 68.2 59.7 68.2 16.1 11.8 18.3
Clustering DMSC 68.1 50.6 73.8 91.6 85.5 91.6 17.5 13.5 25.1

MCDMF 89.2 81.0 89.3 95.8 90.1 95.8 21.4 18.6 24.1
DAMC 98.1 94.2 98.1 96.5 93.2 96.5 25.6 22.5 28.6
EMC-Nets 98.5 94.9 98.5 97.3 94.6 97.3 26.7 25.3 27.4

Table 4   Clustering result on 
MNIST dataset

Model ACC​ NMI Purity

DCCA​ 47.6 44.3 49.2
DCCAE 43.8 39.3 45.1
BMVC 57.5 51.8 59.3
DMSC 65.3 59.4 65.7
DAMC 65.1 56.2 65.9
MCDMF 53.9 49.1 54.0
EMC-Nets 72.2 67.0 76.2
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sequences. EMC-Nets is better at capturing space relation-
ships rather than time sequences.

3.3 � Further evaluation

In this subsection, we further discuss the proposed approach 
from the convergence perspectives, the impact of the hyper-
parameters, component study, split process test, various 
fusion techniques, and visualization.

3.3.1 � Convergence study

Our framework is trained alternately by (5) and (6), where 
(6) prevents the network from falling into the trivial solu-
tion, and (5) is to provide precise guidance for the network. 
Figure 4 shows the result of EMC-Nets in terms of ACC, 
NMI, and Purity on HW and BDGP. The solid red line 
shows the ACC value; the green dashed line the NMI of each 
method, and the blue dotted line the Purity. Before reaching 
400 iterations, the network has a significant improvement, 
which means that the model undergoes a mutually compat-
ible process during the alternate training. This process is 
pronounced on the BDGP dataset. For the convergence, as 
the pink dash line shows in Fig. 4, during the instantaneous 
improvement, the NMI ratio is also volatile. At about the 
end of the instantaneous improvement, i.e., during the stable 
phase of the alternate process, the pseudo label will undergo 
a large-scale change, and the NMI ratio is volatile. After 
that phase, the NMI ratio begins to stabilize and gradually 
converges. After 400 iterations, the network performance 
improves and enters a convergence phase. The results show 

that our method needs to go through a long period of oscil-
lation to reach convergence.

3.3.2 � The impact of hyper‑parameters

In the proposed framework, three hyper-parameters require 
tuning, i.e., the number of clusters k, the steps of the instruc-
tion process r, and the approximation process t. We discuss 
the influence of different values of these hyper-parameters on 
the BDGP dataset utilizing the metrics of Section 4.1.2 pre-
sented in Fig. 5. For the different clustering values k, Fig. 5(a) 
highlights that the proposed method reaches the highest value 
k = 5 , where the elbow phenomenon [45] is evident.

Additionally, we evaluate different r and t values to inves-
tigate the network’s performance. For each value pair, trials 
are run five times, and the mean ACC is reported. Accord-
ing to Fig. 5(b), when r = 0 or t = 0 , the clustering accu-
racy is unstable, but as the number of instruction processes 
increases, the clustering accuracy first increases and then 
reduces. Additionally, when t ≤ r , the performance is better 
than t > r . The optimum performance is reached for r = 3 
and t = 2 . This experiment also reveals that the instruction 
process provides to the network the correct guidance to pre-
vent it from a trivial solution and that the approximation 
process enhances the network’s capability to approximate 
the locally optimal solution efficiently.

3.3.3 � Component study

We train three variants of our proposed method to exam-
ine the effect of the attention fusion layer, instruction, and 

Fig. 4   The convergence of the proposed approach on the (a) HW 
and (b) BDGP datasets. The horizontal axis presents the number of 
training epochs. The red, green, and blue lines represent the cluster’s 

ACC., NMI, and Purity metrics. The higher the value, the better. The 
pink line is the NMI ratio of the old and new pseudo labels, where the 
lower, the better
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approximation process: (1) EMCcon represents the EMC-Nets 
variant by removing the attention fusion layer and simply using 
concatenated features, (2) EMCappro is obtained by removing 
the supervisor module, i.e., this variant has only an atten-
tion fusion layer and an approximating process, (3) EMCins 
is obtained by removing the approximating process in EMC-
Nets. Table 5 shows the experimental results on the MNIST 
dataset, from which some critical observations can be made.

First, from the comparison of EMCcon and EMC-Nets, the 
attention mechanism is better than the concatenated feature 
fusion. Second, from the results of EMCappro , the performance 
without an instruction process is not ideal, as the pseudo labels 
generation can easily fall into a trivial solution. Correspond-
ingly, the comparison of the EMCins and EMCappro shows that 
the dual nature of this process conforms to our hypothesis, i.e., 
reconstruction is effective but not efficient, and pseudo labels 
can provide efficient guidance to the network. These results 
demonstrate that the proposed instruction process, approxi-
mation process, and attention fusion layer play a key role in 
improving the performance of multi-view clustering.

3.3.4 � Split process test

To further study the efficiency of the proposed alternate 
training process, we comprehensively study the independ-
ent training scheme of the two processes. Concretely, the 
instruction process is first executed and then the approxi-
mation process to ensure that the two separations have 
no intersection. To ensure that the separation process 
and the alternate process can be trained 1000 times, dur-
ing the separation process, we set the instruction process 
to execute 0, 100, 200, 300, 400, 500 times, respectively, 
and the corresponding approximation process to execute 
1000, 900, 800, 700, 600, 500 times. Especially when the 
number of executions for the instruction process is 0, it is 
equivalent to the behavior of [19]. The corresponding exper-
imental results are presented in Fig. 6. For the separation 
process, the number of instruction process training helps 
to improve the clustering performance, but as the number 
increases, the performance decreases. This phenomenon is 
consistent with our previous assumptions, i.e., reconstruc-
tion is effective but not efficient. Without executing the 
instruction process, the clustering performance is volatile, 
which is also consistent with our previous assumptions and 
is the weakness of [19]. In general, the performance of the 
split process is worse than the alternate process because the 
separation process does not entirely solve the problem or 
provides a trivial solution. However, the alternate process 
can solve these problems.

Fig. 5   The influence of hyper-parameters of EMC-Nets on BDGP dataset, where (a) is the influence of different values of k on ACC, and (b) 
refer to the matrix of the changes of ACC when instruction process step r and approximating process step t set as {0, 1, 2, 3, 4} , respectively

Table 5   Component study on MNIST dataset

Bold entries signify the best performance

Model ACC​ NMI Purity

EMC-Netscon 62.3 61.3 69.5
EMC-Netsappro 39.8 33.7 51.9
EMC-Netsins 63.1 61.5 69.5
EMC-Nets 72.2 67.0 76.2
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3.3.5 � The impact of different fusion techniques

In this part, we study the impact of different view fusion 
methods on the EMC-Nets and examine four fusion methods: 

1.	 1. Concatenated, i.e., simply concatenating features 
extracted from each view, Zcon = [H1,H2,⋯ ,H3].

2.	 Affinity Fusion [12], by establishing a self-expression 
layer to fuse different views as: 

 where �s is the self-expression parameters we need, 
and spectral clustering can be used directly to generate 
pseudo labels.

3.	 DNN fusion. Based on category one above, we build a 
fusion network f (⋅) , where f comprises two fully con-
nected layers.

4.	 Attention fusion, which used in EMC-Nets.

We conduct a fusion comparison experiment on MNIST, 
and for fairness, the feature dimensions output of all 

min
�s

V
�

i=1

‖Hi − Hi�s‖

fusion methods is uniformly set to 200. The correspond-
ing results are presented in Table 6, highlighting that in 
addition to the concatenation fusion strategy, the other 
three fusion methods are not far apart, while the atten-
tion fusion method manages the optimum performance. 
We believe that affinity fusion only considers the con-
sistency between views and ignores complementarity. 
DNN fusion is better than affinity fusion, while due to 
the characteristics of the fully connected network, DNN 
fusion has the opportunity to consider more information, 
but it cannot distinguish it. In the process of attention 
fusion, it is necessary to calculate the similarity of each 
view, which ensures consistency and allocates the ratio 
of the fusion information. This fusion strategy considers 
the complementary information, and since the informa-
tion is allocated according to its similarity, the model can 
distinguish the information importance Table 7.

3.3.6 � Visualization

To demonstrate further the clustering effect of EMC-Nets, 
we use the t-SNE [46] visualization scheme to show the 
common representation extracted from each deep model 
on the BDGP dataset, i.e., DCCA, DMSC, and DAMC. As 
illustrated in Fig. 7, the proposed approach gives a more 
clear and compact cluster structure.

Fig. 6   The impact of split test, the red line refers the performance of our method, the blue line represents the performance of different degrees of 
split

Table 6   Different fusion 
techniques on MNIST dataset

Bold entries signify the best 
performance

Model ACC​ NMI Purity

Concat. 62.3 61.3 69.5
Affinity 68.4 61.7 70.9
DNN 69.1 65.8 69.1
Attention 72.2 67.0 76.2
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4 � Discussion

The proposed approach poses several advantages, including 
its lower computational burden requirements than the exist-
ing state-of-the-art frameworks [16, 17]. Additionally, the 
experiments prove that the clustering quality can be improved 
by utilizing pseudo labels to train the feature extractor. Fur-
thermore, the reconstruction procedure prevents the network 
from providing a trivial non-optimum solution. We have also 
proved that the proposed alternating training process can con-
verge well after a sufficient number of down generations, and 
finally, the clustering module in EMC-Nets can be replaced 
with other clustering algorithms, such as spectral clustering, 
which makes our framework highly adaptable. Despite its 
advantages, our method has a few limitations. Specifically, 
it has an excessive period of shaking, as, during the experi-
mental evaluation, our method presents a long oscillation 
period (about 400 iterations). This period is unfavorable for 
tight computing power, and this phenomenon is caused by the 
uncertainty of unsupervised learning and the compatibility 
of the alternate processes. Additionally, our method is not 
suitable for small sampled data. Our framework employs the 
attention mechanism as the core of the fusion layer, directly 
affecting the quality of the joint representation. The attention 
mechanism can exert a powerful performance for sufficient 
data volume, but its performance is weak compared to other 
forms of fusion mechanisms for small samples.

5 � Conclusion

This paper proposes a novel framework, entitled Efficient 
Multi-view Clustering Networks (EMC-Nets), which 
includes a feature extractor, supervisor module, and a 
clustering module. Utilizing pseudo labels to enhance the 
feature extractor affords EMC-Nets learning discrimina-
tive common representation efficiently. Furthermore, we 
design robust alternating processes to make EMC-Nets 
more efficient than other reconstruction-based algorithms. 
We treat the instruction process to prevent the model from 
providing a trivial non-optimum solution during training 
and the approximation process to fit the reasonable cluster 
distribution. Experimental results on four real-world data-
sets demonstrate the superiority of our model over several 
state-of-the-art multi-view clustering methods. Our future 
work shall focus on a more stable training process. This 
is quite challenging as it requires fully understanding the 
training dynamics of the alternate process and studying the 
network’s learning behavior. Additionally, we also consider 
the theoretical relationship of the core concepts exploited. 
Intuitively, we consider that the instruction process and 
pseudo labels training process are closer to the E-step and 
M-step ideas in the Expectation-Maximization (EM) algo-
rithm [47]. The future aim shall be to prove the relationship 
between them.

Fig. 7   Visualization of original features for each view and the common latent representations given by different algorithms with t-SNE [46] on 
BDGP dataset, where (a) original data of first view, (b) original data of second view, (c) DCCA, (d) DMSC, (e) DAMC, and (f) EMC-Nets
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Table 7   EMC-Nets in the 
BDGP experiments

Module Layer Input Output Hyper-parameters

View-1 Encoder Linear 1750 500 bias=False
Linear 500 300
Linear 300 100

View-2 Encoder Linear 79 300 bias=False
Linear 300 100

Fusion Layer TransformerEncoder ×1 200 200 head=1, dff=256
Classifier Linear+Sigmoid 200 5
View-1 Decoder Linear 200 300

Linear 300 500
Linear+Sigmoid 500 1750

View-2 Decoder Linear 200 300
Linear+Sigmoid 300 79

The total number of parameters: 2, 750, 446

Table 8   EMC-Nets in the HW 
experiments

Module Layer Input Output Hyper-parameters

View-1 Encoder Linear 240 150 bias=False
View-2 Encoder Linear 76 50 bias=False
Fusion Layer TransformerEncoder ×1 200 200 head=1, dff=1024
Classifier Linear+Sigmoid 200 10
View-1 Decoder Linear 200 200

Linear+Sigmoid 200 240
View-2 Decoder Linear+Sigmoid 200 76
The total number of parameters: 1, 290, 424

Table 9   EMC-Nets in the CCV 
experiments

Module Layer Input Output Hyper-parameters

View-1 Encoder Linear 4000 2000 bias=False
Linear 2000 1000
Linear 1000 200

View-(2,3) Encoder Linear 5000 3000 bias=False
Linear 3000 2000
Linear 2000 800
Linear 800 400

Fusion Layer TransformerEncoder ×2 1000 1000 head=1, dff=2048
Classifier Linear+Sigmoid 1000 20
View-1 Decoder Linear 1000 2000

Linear 2000 4000
View-(2,3) Decoder Linear 1000 2000

Linear 2000 3000
Linear 3000 5000

The total number of parameters: 126, 410, 764
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Appendix: Network architectures

In this section, we report the details of the network architec-
ture, includes network layer, input and output size, hyper-
parameters of the layer, and the total number of parameters, 
used in the experiments. Note that all the layer of network 
are used Pytorch-style API. For the fully-connected (linear) 
layer, we use bias as default, and we report the head and the 
dimension of feedforward (dff) of the TransformerEncoder 
(Tables 7, 8, 9, 10).
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