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ABSTRACT
Multi-view (or -modality) representation learning aims to under-
stand the relationships between different view representations. Ex-
isting methods disentangle multi-view representations into con-
sistent and view-specific representations by introducing strong
inductive biases, which can limit their generalization ability. In this
paper, we propose a novel multi-view representation disentangling
method that aims to go beyond inductive biases, ensuring both inter-
pretability and generalizability of the resulting representations. Our
method is based on the observation that discoveringmulti-view con-
sistency in advance can determine the disentangling information
boundary, leading to a decoupled learning objective. We also found
that the consistency can be easily extracted bymaximizing the trans-
formation invariance and clustering consistency between views.
These observations drive us to propose a two-stage framework. In
the first stage, we obtain multi-view consistency by training a con-
sistent encoder to produce semantically-consistent representations
across views as well as their corresponding pseudo-labels. In the
second stage, we disentangle specificity from comprehensive repre-
sentations by minimizing the upper bound of mutual information
between consistent and comprehensive representations. Finally, we
reconstruct the original data by concatenating pseudo-labels and
view-specific representations. Our experiments on four multi-view
datasets demonstrate that our proposed method outperforms 12
comparison methods in terms of clustering and classification per-
formance. The visualization results also show that the extracted
consistency and specificity are compact and interpretable. Our code
can be found at https://github.com/Guanzhou-Ke/DMRIB.

CCS CONCEPTS
• Computing methodologies→ Image representations.
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Figure 1: Illustration of the key observations and basic idea
behind our method. On the left side of the graph, when tar-
get labels are available, we can disentangle consistent (pink)
and specific representations (orange and blue) from compre-
hensive representations using the information bottleneck
principle. However, when target labels (e.g., object categories)
aremissing, it becomes difficult to distinguish the boundaries
of each part of the information. Based on this phenomenon,
we found (on the right side) that if multi-view consistency is
known in advance, we can obtain the remaining information
by minimizing the mutual information between the com-
prehensive and consistent representations. Additionally, we
observed that pulling the semantic distance between two
views closer in a suitable semantic space helps us extract the
multi-view consistency.

KEYWORDS
multi-view representation learning, disentangled representation,
consistency and specificity

ACM Reference Format:
Guanzhou Ke, Yang Yu, Guoqing Chao, Xiaoli Wang, Chenyang Xu,
and Shengfeng He. 2023. Disentangling Multi-view Representations Be-
yond Inductive Bias. In Proceedings of the 31st ACM International Conference
on Multimedia (MM ’23), October 29–November 3, 2023, Ottawa, ON, Canada.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3581783.3611794

1 INTRODUCTION
With the increasing availability of data from various sources, such
as images, text, and sensors, it is essential to extract useful and
rich information from them in multimedia applications. Multi-view
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Representation Learning (MRL) [35], also known as multi-modal
representation learning, is a promising approach that has gained
attention in the communities. In cross-modal retrieval [26], “views”
can be the pairs of images and corresponding textual descriptions re-
ferring to the same object. In autonomous driving [49], “views” can
also refer to video frames of the same object captured by cameras at
different positions. While MRL has proven effective in practical ap-
plications, such as clustering [7, 14], classification [36, 46], and face
synthesis [40, 42, 43], understanding the underlying relationships
between different view representations remains an open question.
In general, multi-view comprehensive representations consist of
consistent and specific representations [19], which combine in a cer-
tain pattern to form the multi-view comprehensive representation.
Consistent representations refer to the shared information among
different views, while view-specific representations refer to the pri-
vate information of each view. Therefore, distinguishing between
these two representations is an essential step in understanding
multi-view representations.

One possible approach to understanding multi-view representa-
tions is to disentangle the comprehensive representation of each
view and extract its consistency and specificity. Previous meth-
ods [8, 18, 33, 34] utilize the information bottleneck principle [29]
to achieve this goal. The information bottleneck principle is a su-
pervised method that aims to minimize the mutual information
between the input data x and its embedding representation z, while
simultaneously maximizing the mutual information between z and
target label y. In the context of multi-view representation learn-
ing, this principle can be used to extract consistent representations
by maximizing the mutual information between views, and view-
specific representations can be similarly obtained by minimizing it.
However, since most multi-view data is large-scale and unlabeled,
these methods cannot be directly applied in unsupervised settings.
In unsupervised settings, models cannot directly determine which
parts of the representation correspond to consistency or specificity,
which may lead to suboptimal solutions (see left part of Figure 1).
For example, in the scenario of identifying clothes from different
angles, we hope the model focuses on the inherent traits of the
clothes (consistency), rather than who is wearing them (specificity).
This task is easy to solve in the supervised setting but is challenging
in the unsupervised setting where the model needs to distinguish
between the boundaries of people and clothes. To address this issue,
some works [9, 10, 41] introduce prior distribution assumptions for
the process of disentangling consistent and view-specific represen-
tations. For example, [41] assumes that the consistency obeys the
Gumbel distribution, and the specificity obeys the mixed Gaussian
distribution. We argue that both the information bottleneck princi-
ple and prior distribution assumptions are strong “inductive biases”.
While the former requires data to have distinguishable information
boundaries, the latter requires data to obey the prior distribution as-
sumptions. However, these inductive biases may limit the scalability
of downstream applications.

The main objective of this research is to investigate whether un-
supervisedmulti-view representation disentangling can be achieved
with weak inductive biases. This study is motivated by two key
observations, which are illustrated in Figure 1. The first observation
is that it is easier to separate specificity from comprehensive repre-
sentations when consistent information is known beforehand. The

second observation is that finding a suitable semantic space and
narrowing the semantic distance between views in this space can
help extract view consistency. Therefore, the challenge of extracting
consistency is transformed into finding a suitable transformation
space that satisfies two characteristics: low-level and high-level in-
formation. From the low-level perspective, the semantics associated
with different view data of the same object should remain the same
after data augmentation. For example, the semantics associated
with the term “dog” remains the same even after color transforma-
tion is applied to views of dogs with different backgrounds. This is
called transformation invariance. From the high-level perspective,
all views of similar objects should have the same clustering proto-
type. We refer this to as clustering consistency. By narrowing the
semantic distance of multi-view data in the space with transforma-
tion invariance and clustering consistency, multi-view consistency
can be extracted. Based on these insights, a two-stage multi-view
representation disentanglement method is proposed in this paper.

In the first stage, we employ a consistent encoder that maximizes
both the transformation invariance and clustering consistency to
output the consistent representation and corresponding cluster-
ing pseudo-labels. To maximize intra-view consistency, we first
apply data augmentation to each view to generate new data that
preserves the original semantics. Then, we map these augmented
views to the same semantic space and cluster them to assign the
same pseudo-label to views with the same semantics. We also in-
troduce a maximum entropy constraint to prevent assigning all
instances to the same cluster. In the second stage, we use multiple
view-specific encoders to extract comprehensive representations for
each view. We then minimize the upper bound of mutual informa-
tion between view-consistent representations and comprehensive
representations of each view to obtain specificity for each view.
We adopt the VAE architecture and concatenate the pseudo-labels
and view-specific representations as input to the view-specific de-
coders to generate data. Our approach has two benefits: First, the
two-stage architecture only requires variational inference for view-
specific representations; and second, utilizing pseudo-labels to con-
trol the view-generation process can improve interpretability. In
other words, the pseudo-labels output from the first stage provides
interpretability for the consistent representation and can control
the generation of view data corresponding to the class. In addition,
we extract specificity with a probabilistic approach, using a mixture
of Gaussian distributions to fit the specificity distribution, which en-
ables the sampling of data with different styles. Combining the two
attributes, we can ultimately achieve data generation with specified
output classes and output styles. Extensive experimental results on
four multi-view datasets demonstrate our superior performances
against state-of-the-art methods. The main contributions of this
paper can be summarized as follows:

• We propose a two-stage unsupervised multi-view represen-
tation disentangling method that goes beyond inductive bias,
requiring only the information of consistency to achieve
disentanglement.

• We delve into multi-view consistency by mining view trans-
formation invariance and clustering consistency. Ablation
studies show that the quality of consistent representations
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directly affects the expressive ability of the model and the
quality of disentanglement.

• Our proposed method outperforms state-of-the-art meth-
ods in terms of clustering and classification performance.
Visualization results also demonstrate that the extracted con-
sistency and specificity are compact and interpretable.

2 RELATEDWORK
2.1 Multi-view Representation Learning
Multi-view representation learning [35] can be broadly categorized
into two groups: statistic-based and deep learning-based methods.
Statistic-based methods focus on extracting view-consistent rep-
resentations using techniques such as CCA-based methods [6, 26],
non-negative matrix factorization methods [20, 38], and subspace
methods [2, 37]. However, these methods have difficulty scaling up
to high-dimensional and large-scale data scenarios [6, 26]. There-
fore, a large number of deep learning-based methods have been
developed in recent years [1, 23, 30, 35, 41, 43, 45, 48]. A comprehen-
sive review [17] provides an overview of the current development
status of MRL. Our method belongs to the deep learning-based
approaches. In unsupervised scenarios, most previous methods use
generative models such as autoencoders [1, 35, 45] or GANs [48] to
extract multi-view comprehensive representations. However, there
is a significant amount of redundant information in these represen-
tations that does not provide substantial help for downstream tasks.
Therefore, many methods have begun to focus on the importance of
disentangling multi-view representations, such as extracting view-
consistent representations using contrastive learning [15, 28, 30] or
separating consistent and view-specific representations based on
the theory of information bottleneck [8, 41]. Unfortunately, in unsu-
pervised environments, the model has difficulty distinguishing the
boundaries between different types of information. Unlike previous
methods, we propose a two-stage disentanglement strategy that
first extracts view-consistent representations using self-supervised
learning and then uses them as known information to extract view-
specific representations by minimizing the upper bound of mutual
information between consistent representations and comprehen-
sive representations.

2.2 Disentangled Representation Learning
Disentangled Representation Learning (DRL) has emerged as a
promising direction for learning independent factors in represen-
tations. This concept can be traced back to Independent Compo-
nent Analysis (ICA)[44], which has since inspired various deep
learning-based approaches, including InfoGAN[5] and 𝛽-VAE [13].
VAE-based methods, in particular, learn a variational distribution
𝑞(𝑧) ∼ N (0, 1) to approximate the original data distribution 𝑞(𝑥),
making them highly interpretable in statistics.

Recent efforts have focused on applying DRL to multi-view learn-
ing, where multiple views of data are available for training. For
example, Xu et al.[41] proposed a multi-view DRL method that
combines a generative model and a disentangled representation
model to learn discriminative representations. Federici et al.[8] pro-
posed a multi-view DRL method that applies a mutual information
maximization objective to learn a joint latent space. Wang et al. [34]

proposed a deep multi-view learning method that incorporates a
shared disentangled representation into the learning process.

In comparison to these existing methods, our proposed method
only aims to separate the specificity from the comprehensive rep-
resentations. This simplification allows us to use a VAE-based ar-
chitecture for the second stage of our method. Additionally, we
only need to perform variational inference on the specificity, which
reduces the computational complexity of our approach. Further-
more, we use pseudo-labels to assist the data reconstruction process,
which helps to generate the required data under certain conditions.

3 METHODOLOGY
Give a multi-view dataset with 𝑉 views X =

{𝑋 (1) , 𝑋 (2) , · · · , 𝑋 (𝑉 ) |𝑋 (𝑖 ) ∈ R𝑁×𝑑𝑣 }, where 𝑑𝑣 is the di-
mensionality of 𝑣-th view. The proposed method aims to extract
comprehensive representations from X and subsequently disentan-
gle them into view-consistent representations 𝑆 and view-specific
representations 𝑃 (𝑣) . To this end, we leverage unsupervised
pre-text tasks, such as contrastive learning [3, 4], to extract
view-consistent representations. According to the conclusion
of previous methods [8, 28], we found that maximizing the
transformation invariance in contrastive learning methods is
equivalent to maximizing the intra-view consistency. Furthermore,
to improve the generalizability of consistent representations, we
assume that a good view-consistent representation needs to satisfy
two conditionals: i) transformation invariance and ii) clustering
consistency. This part is depicted in section 3.1. After that, we
extract comprehensive representations using the Conditional
VAE (CVAE) [27] and then minimize the upper bound of mutual
information between the comprehensive representation and the
consistent representation for disentanglement. The benefit of
this strategy is that it reduces the complexity of disentangling
by reducing the number of unknown variables. This part will be
discussed in section 3.2. We present the framework of the proposed
method in Figure 2.

3.1 Mining Consistency
As previously mentioned, we assume that view-consistent infor-
mation can be extracted through the transformation invariance
and clustering consistency. Transformation invariance means that
two views of an object, 𝑋 (1) and 𝑋 (2) , should maintain the same
semantic information, regardless of any transformations applied to
them. For example, even after applying color jitter, the semantics
of 𝑋 (1) and 𝑋 (2) should remain unchanged. On the other hand,
clustering consistency implies that the clustering prototypes ob-
tained from two views should remain the same after applying the
same clustering mapping function. For instance, when processing
different views of a dog’s front and side, the clustering algorithm
should assign both views to the same cluster. Next, we will examine
how to extract them from multiple views data.

In contrastive learning [4, 11], the goal is to learn transformation
invariance (or augmentation invariance) by reducing the semantic
distance between two distinct augmentations of an image. Mean-
while, in [28], researchers have shown that the intra-view consis-
tent information can be learned by using two different views of
an object in multi-view scenarios. Thus, we design the strategy of
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Figure 2: Illustration of the workflow of the proposed method. It includes a consistent encoder 𝐸𝑐 (·), 𝑉 view-specific encoders
𝐸
(𝑖 )
𝑝 (·) and decoders 𝐷 (𝑖 )

𝑝 (·), a clustering head 𝑔(·), a contrastive head 𝑓 (·), and a disentanglement module. We adopt a two-stage
approach to disentangle the consistency and the specificity. In the first stage, we train 𝐸𝑐 (·) using contrastive and clustering
heads, and then freeze its weights of the 𝐸𝑐 (·). In the second stage, we use 𝐸 (𝑖 )𝑝 (·) to learn the comprehensive representation
of views, and then disentangle view-specific representations from the comprehensive representation by using the consistent
representation 𝑆 and clustering labels as known information. Finally, we complete the reconstruction task by concatenating
the view-specific representation and clustering labels as the input to 𝐷 (𝑖 )

𝑝 (·).

maximizing multi-view transformation invariance. In essence, we
apply an augmentation strategy, similar to [4], to each view. This
approach yields a significant advantage in that we can obtain 2𝑉×
positive and negative sample pairs. Then, we develop a multi-view
contrastive learning loss, which is presented in the following:

L𝑖𝑛𝑠 =
1
𝑉𝐵

∑︁
1≤𝑖< 𝑗<≤𝑉

2𝐵𝑉∑︁
𝑘=1

− log
ℎ(𝒛 ( 𝒊)

𝒌
, 𝒛 (𝒋)

𝒌
)∑2𝐵𝑉

𝑚=1 1[𝑚≠𝑘 ]ℎ(𝒛
( 𝒊)
𝒌
, 𝒛 (𝒋)𝒎 )

(1)

where ℎ(𝒂, 𝒃) = exp(sim(𝒂, 𝒃)/𝜏), sim(𝒂, 𝒃) = 𝒂𝑇 𝒃
∥𝒂 ∥ ∥𝒃 ∥ , 𝐵 is the

size of a minibatch, 1[𝑚≠𝑘 ] ∈ {0, 1} implies an indicator function
evaluating to 1 if 𝑚 ≠ 𝑘 , and 𝒛 (𝑖 ) is the contrastive vector of
𝑖-th view data 𝑥𝑖 obtained from 𝒛 (𝑖 ) = 𝑓 (𝐸𝑐 (𝑥 (𝑖 ) )), 𝑓 (·) is the
contrastive head consists of MLP and 𝐸𝑐 (·) denotes the consistent
encoder.

To further mine the view-consistent information, we argue that
different views of an object must have consistent clustering proto-
types. Inspired by [32], we encourage different views of an object
and 𝐾 nearest neighbors that are close in embedding space and can
be classified into the same cluster. We employ a clustering head,
denoted as 𝑔(·), to classify each sample in X, which terminates
in a softmax function to execute a soft assignment over clusters
C = {1, · · · ,𝐶}. The probability of assigning 𝑋 (𝑖 ) to cluster 𝑐 is
denoted as 𝑔𝑐 (𝑋 (𝑖 ) ). Therefore, we define the loss function of multi-
view clustering consistency as the following:

L𝑐𝑙𝑢 = − 1
𝑉𝐵

∑︁
1≤𝑖< 𝑗<≤𝑉

𝐵∑︁
𝑘=1

log⟨𝑔(𝑥 (𝑖 )
𝑘

), 𝑔(𝑥 ( 𝑗 )
𝑘

)⟩

+ 𝜆𝑐𝑙𝑢
∑︁
𝑐∈C

𝑔′𝑐 log𝑔′𝑐

with 𝑔′𝑐 =
1
𝐵

𝐵∑︁
𝑘=1

𝑔𝑐 (𝑥 (𝑖 )
𝑘

)

(2)

where 𝜆𝑐𝑙𝑢 denotes the entropy weight, ⟨·⟩ is the dot product oper-
ator. In Eq. (2), the first term encourages 𝑔(·) to make consistent
cluster for a sample 𝑥 (𝑖 )

𝑘
and its multi-view neighboring sample

𝑥
( 𝑗 )
𝑘

. To avoid 𝑔(·) obtaining trivial solutions, the second term is
used to spread the clustering results uniformly.

In practice, we have discovered that pre-training the network
using Eq. (1), followed by mining the clustering consistency infor-
mation using Eq. (2), produces superior results compared to training
them jointly.

3.2 Mining Specificity
The goal of disentangling the multi-view representations is to sep-
arate the consistent representation 𝑆 and view-specific representa-
tions 𝑃 (𝑣) from the multi-view comprehensive representation 𝐻 . In
the unsupervised setting, it is difficult for the model to distinguish
which part is the consistency, and which part is the specificity. We
have reconsidered the representation disentangling from the in-
formation theory perspective. Disentangling specificity from the
comprehensive representation is equivalent to minimizing the up-
per bound of the mutual information between the view-consistent
representation and comprehensive representations. Intuitively, we
assume that the information of the comprehensive representation
equals the sum of the consistent and view-specific information. Like
solving ternary equations, solving view-specific representations
will be easy when consistent and comprehensive representations
are known. Therefore, we can determine the 𝑖-th view-specific
representations 𝑃 (𝑖 ) by minimize the following objective:

min 𝐼 (𝑆, 𝐻 (𝑖 ) ) + 𝜖 (3)

where 𝜖 is the noise contained within the view, and it is a constant.
In the complete view setting, we consider 𝜖 negligible. Then, we
have:
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𝐼 (𝑆, 𝐻 (𝑖 ) ) = E𝑞 (𝑆,𝐻 (𝑖 ) ) log
𝑞𝑖 (𝐻 (𝑖 ) |𝑆)
𝑞(𝐻 (𝑖 ) )

= E𝑞 (𝑆,𝐻 (𝑖 ) ) log
𝑞𝑖 (𝐻 (𝑖 ) |𝑆)
𝑟 (𝐻 (𝑖 ) )

𝑟 (𝐻 (𝑖 ) )
𝑞(𝐻 (𝑖 ) )

= E𝑞 (𝑆,𝐻 (𝑖 ) ) log
𝑞𝑖 (𝐻 (𝑖 ) |𝑆)
𝑟 (𝐻 (𝑖 ) )

− KL[𝑟 (𝐻 (𝑖 ) )∥𝑞(𝐻 (𝑖 ) )]

≤ E𝑞 (𝑆,𝐻 (𝑖 ) ) log
𝑞𝑖 (𝐻 (𝑖 ) |𝑆)
𝑟 (𝐻 (𝑖 ) )

(4)

where 𝑞𝑖 (·) denotes the 𝑖-th view-specific marginal distribution,
𝑞(𝑎;𝑏) implies the joint distribution of random variables 𝑎 and
𝑏, and 𝑟 (·) is mixed Gaussian distributions. In Eq. (4), we can
clearly see that the upper bound depends on the approxima-
tion of the marginal distribution 𝑟 (𝐻 (𝑖 ) ) to prior 𝑞(𝐻 (𝑖 ) ). Since
KL[𝑟 (𝐻 (𝑖 ) )∥𝑞(𝐻 (𝑖 ) )] ≥ 0, we just need to optimize the first term.
Therefore, we simplify the upper bound as the following:

min 𝐼 (𝑆, 𝐻 (𝑖 ) ) ≡ minL𝑑𝑖𝑠 = E𝑞 (𝑆,𝐻 (𝑖 ) ) log
𝑞𝑖 (𝐻 (𝑖 ) |𝑆)
𝑟 (𝐻 (𝑖 ) )

(5)

Theoretically, as long as the consistent information is accurate
enough, Eq. (5) can approach the optimal solution indefinitely. This
means that the quality of disentangling improves with the improve-
ment of consistent information.

Next, we adopt the architecture of CVAE to extract compre-
hensive representations 𝐻 (𝑖 ) . There are two advantages to this
approach: i) it allows for fitting disentangled view-specific repre-
sentations using a mixture of Gaussian distributions, and ii) by
combining the category information output by the consistent en-
coder, the interpretability of the representations can be improved.
We extend the CVAE to multi-view scenarios, and its loss function
is as follows:

L𝑐𝑎𝑣𝑒 = −
𝑉∑︁
𝑖=1
Ez∼𝑞 (z |𝑋 (𝑖 ) ,𝑆 ) [logΦ(𝑋

(𝑖 ) |z, 𝑆)]

+ KL[𝑞(z|𝑋 (𝑖 ) , 𝑆)∥Φ(z))]

(6)

where z = [𝑃 (𝑖 ) ; 𝑆], [·] denotes the concatenating operation, and
𝑃 (𝑖 ) ∼ N(0, 1). Therefore, we can formulate the joint loss function
of the second stage:

L𝑠𝑝𝑐 = L𝑐𝑎𝑣𝑒 + 𝜆𝑑𝑖𝑠L𝑑𝑖𝑠 . (7)

4 EXPERIMENTS
4.1 Dataset
We evaluate the proposed method and other competitive methods
using four multi-view datasets. There are: (a) Edge-MNIST [22],
which is a well-known benchmark dataset consisting of 70,000
grayscale digit images (0-9) with 28 × 28 pixels. The views contain
the original digits and the edge-detected version, respectively; (b)
Edge-FMNIST [39], which is a fashion dataset consisting of 28 × 28
grayscale images of clothing items. We synthesize the second view
by running the same edge detector used to create Edge-MNIST;
(c) COIL-20 [24], which depicts from different angles containing

Table 1: Dataset Description

Dataset #samples #view #class #shape

Edge-MNIST 70,000 2 10 (1 × 28 × 28)
Edge-FMNIST 70,000 2 10 (1 × 28 × 28)

COIL-20 1,440 2 20 (1 × 128 × 128)
MVC-10 161,260 3 10 (3 × 224 × 224)

grayscale images of 20 items. We create a two-view dataset by
randomly grouping the images for an item into two groups; (d)
MVC-10 [21], which is a multi-angle clothing dataset consisting of
161,260 left-, right-, back-, and front-view with 10 categories. In
our experiments, we use any three views to build the multi-view
dataset. We report the dataset description in Table 1.

4.2 Baseline and Metrics
We compare the proposed method and the following 12 baseline
clustering and classification methods, which are categorized into
three types: (a) Single-view methods: K-means (KM) for clus-
tering, and Support Vector Machine (SVM) for classification. Note
that KM𝑐𝑎𝑡 denotes concatenating all view-specific representations.
𝛽-VAE [13] is a VAE-based method, which can obtain disentan-
gled representation in the single-view scenario. In our settings, we
select the best view as the 𝛽-VAE’s input; (b) Multi-view meth-
ods: SCAN [32] and SimCLR [4] are self-supervised methods, and
we use them to extract the consistent representation. SiMVC and
CoMVC [30] are two contrastive learning-based multi-view clus-
tering methods. EAMC [47] is an adversarial multi-view cluster-
ing method. CMC [28] is a contrastive multi-view representation
learning method. MORI-RAN [15] is a contrastive fusion-based
multi-view representation learning method; (c) Multi-view dis-
entangled methods:Multi-VAE [41] is a VAE-based multi-view
disentangled representation learningmethod. MIB [8] is an informa-
tion bottleneck-based multi-view representation learning method.
Note that MIB is limited to two views; for datasets with more than
two views, we select the best two views as its input.

4.3 Implementation Details
We implement the proposed method and other non-linear compari-
son methods on the PyTorch 1.10 [25] platform, running on Ubuntu
18.04 LTS utilizing an NVIDIA A100 tensor core Graphics Process-
ing Units (GPUs) with 40 GB memory size. For simplicity, we use
ResNet [12] as the consistent encoder, where ResNet-18 is used
for the Edge-MNIST and Edge-FMNIST datasets, and ResNet-34 is
used for the COIL-20 and MVC-10 datasets. We set the dimension-
ality of view-specific encoders to 𝐼 −Conv432 −Conv464 −Conv4128 −
Conv4256 − 𝑂 for all experiments, where 𝐼 and 𝑂 indicate the di-
mension of the data’s input and the encoder’s output, respectively.
It means that convolution kernel sizes are 4 − 4 − 4, channels are
32 − 64 − 128 − 256, the stride is set as 2, and the dimensionality of
embedding is 256. The decoders are symmetric with the encoders.
For all 𝜇𝑣 and 𝜎𝑣 , are set as 10-dimensional. We pre-train the consis-
tent encoder using a similar way in the [4] and [32]. For the second
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Table 2: Clustering results on four datasets, where “–” denotes the dataset cannot handle such scenarios. † indicates that we
use Eq. (1) and (2) to enable it to handle multi-view data. The best and the second best values are highlighted in red and blue,
respectively. All results are reproduced using our implemented code.

Edge-MNIST Edge-FMNIST COIL-20 MVC-10

Method ACC𝑐𝑙𝑢 NMI ARI ACC𝑐𝑙𝑢 NMI ARI ACC𝑐𝑙𝑢 NMI ARI ACC𝑐𝑙𝑢 NMI ARI

KM𝑐𝑎𝑡 38.27±1.93 32.87±1.69 20.07±1.30 21.82±1.08 21.71±1.25 14.36±1.63 36.25±3.06 50.38±1.55 22.28±2.95 - - -
𝛽-VAE (NIPS’18) [13] 57.88±0.42 52.77±0.02 48.17±0.01 40.87±0.11 39.48±0.32 39.42±0.13 18.52±0.53 58.73±0.60 34.12±0.60 34.55±1.07 30.45±0.86 11.03±1.37

SimCLR† (PRML’20) [4] 44.69±0.26 36.90±0.12 27.06±0.31 47.48±0.42 47.14±0.31 31.29±0.21 80.15±3.63 92.44±0.92 80.76±3.10 38.64±1.82 41.30±1.45 21.78±1.59
SCAN† (ECCV’20) [32] 95.38±1.26 91.44±1.28 90.19±1.73 70.34±1.95 65.82±1.86 57.19±1.44 89.11±2.30 94.57±3.42 88.26±2.37 39.08±1.53 45.14±1.32 31.65±1.18
SiMVC (CVPR’21) [30] 86.41±1.15 83.17±0.94 82.66±1.17 56.83±0.27 50.12±0.15 43.28±0.31 77.45±2.59 92.03±3.16 73.58±6.33 35.82±4.18 38.61±3.47 20.97±3.92
CoMVC (CVPR’21) [30] 95.42±1.54 90.85±2.38 89.73±2.05 58.94±2.69 53.27±2.08 49.72±3.22 90.04±1.20 95.19±1.21 91.13±1.38 39.15±2.19 43.96±1.67 25.79±1.52
EAMC (CVPR’20) [47] 66.78±0.52 63.11±0.34 59.83±1.22 55.21±1.60 62.57±1.48 48.51±1.88 67.28±3.59 75.83±4.21 68.73±6.30 41.38±1.08 42.53±0.66 29.46±1.35
CMC (ECCV’20) [28] 80.76±1.12 78.49±1.18 76.28±0.78 49.56±2.25 45.68±2.16 43.55±1.47 78.32±1.38 91.20±1.33 63.40±1.32 25.17±2.54 19.34±2.93 15.10±1.09

MORI-RAM (ICDM’22) [15] 82.13±4.11 78.25±1.68 75.14±3.52 58.33±4.48 55.19±2.70 40.86±2.23 73.58±0.71 84.72±1.36 71.95±1.19 24.48±0.29 22.39±0.49 12.29±1.05

Multi-VAE (CVPR’21) [41] 60.24±0.83 58.37±0.58 44.16±0.91 53.38±1.14 56.56±1.56 41.02±0.95 64.58±1.58 79.59±1.15 54.19±2.50 33.49±0.13 34.72±0.44 17.09±1.10
MIB (ICLR’20) [8] 53.65±5.33 48.16±7.41 36.07±3.66 54.41±4.82 53.08±6.50 44.69±6.77 51.67±5.79 83.12±3.36 56.76±4.89 - - -

Ours 97.71±1.24 95.82±2.07 95.08±1.28 73.06±1.47 70.39±0.28 60.44±1.44 90.64±2.24 97.36±1.07 90.68±2.33 48.91±0.56 47.67±0.73 33.65±0.66
Δ SOTA ↑2.29 ↑4.37 ↑4.89 ↑2.72 ↑4.57 ↑3.25 ↑1.53 ↑2.17 ↓0.45 ↑7.53 ↑2.53 ↑2.00

Table 3: Classification results on four datasets, where “–” denotes the dataset cannot handle such scenarios. † indicates that we
use Eq. (1) and (2) to enable it to handle multi-view data. The best and the second best values are highlighted in red and blue,
respectively. All results are reproduced using our implemented code.

Edge-MNIST Edge-FMNIST COIL-20 MVC-10

Method ACC𝑐𝑙𝑠 F-Score ACC𝑐𝑙𝑠 F-Score ACC𝑐𝑙𝑠 F-Score ACC𝑐𝑙𝑠 F-Score

SVM𝑐𝑎𝑡 42.89±0.07 41.11±0.5 53.51±0.21 53.58±0.08 10.42±0.01 8.02±0.01 - -
𝛽-VAE (NIPS’18) [13] 96.11±0.14 96.06±0.16 81.61±0.03 81.50±0.41 95.49±0.25 96.04±0.03 70.63±2.13 57.14±1.04

SimCLR† (PRML’20) [4] 97.97±0.02 97.95±0.03 80.09±0.03 80.06±0.02 97.19±0.11 97.00±0.11 71.61±0.20 67.02±0.16
SCAN† (ECCV’20) [32] 98.13±0.04 98.04±0.10 83.62±0.02 80.16±0.01 98.60±0.01 98.60±0.01 72.84±0.14 71.28±0.11
CMC (ECCV’20) [28] 97.53±0.03 97.50±0.02 77.11±0.14 75.78±0.28 97.31±0.01 97.31±0.01 70.19±0.89 69.79±1.42

MORI-RAM (ICDM’22) [15] 94.76±0.94 94.14±0.56 77.88±1.12 77.16±0.99 88.43±1.01 85.69±1.33 65.26±0.18 61.77±0.69
MIB (ICLR’20) [8] 90.81±1.30 90.03±0.69 75.33±0.05 73.80±0.05 59.72±2.29 53.99±2.03 - -

Ours 99.41±0.06 99.41±0.04 85.19±0.07 84.88±0.07 99.81±0.01 99.80±0.01 79.07±0.09 79.04±0.22
Δ SOTA ↑1.28 ↑1.37 ↑1.57 ↑3.38 ↑1.21 ↑1.20 ↑6.20 ↑7.76

stage of our method, we use Adam with default parameters and an
initial learning rate of 0.0005 for training view-specific encoders
and decoders for 150 epochs. For the comparing methods, we use
their release codes with the settings recommended by the authors.
For evaluation, we extract all latent representations, then feed them
into K-means and SVM, and report their results, respectively. To
eliminate the randomness, we run our method and other methods
10 times, and report their average and standard deviation values in
terms of all evaluation metrics.

4.4 Evaluation Metrics
In order to evaluate clustering performance, three standard evalua-
tion metrics are used: clustering ACCuracy (ACC𝑐𝑙𝑢 ), Normalized
Mutual Information (NMI), and Adjusted Rand Index (ARI). Readers
seeking further details on these metrics are referred to [16]. It is
important to note that the validation process of clustering methods
is limited to cases where ground truth labels are available. For clas-
sification, ACC𝑐𝑙𝑠 and F-Score are utilized as evaluation metrics. In
all cases, a higher value indicates better performance.
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4.5 Comparison Results and Analysis
We evaluate our method with 12 state-of-the-art multi-view meth-
ods in terms of clustering and classification performance on four
datasets, as shown in Table 2 and Table 3, where the following
observations are obtained:

Our method outperforms other compared methods on all metrics
of clustering and classification tasks. Especially, we achieve signifi-
cant improvements over the second-best method on Edge-MNIST,
Edge-FMNIST, and MVC-10 datasets. For instance, our method
achieves 2.29% (97.71% − 95.42%) and 7.53% (48.91% − 41.38%)
higher clustering accuracy than the second-best method on Edge-
MNIST and MVC-10 datasets, respectively.

In comparison with single-view methods (KM𝑐𝑎𝑡 and 𝛽-VAE), we
find that simply concatenating all comprehensive representations
of different views does not significantly improve the downstream
performance. Furthermore, the multi-view disentangling method
(Multi-VAE, MIB, and our method) significantly outperforms the
single-view disentangling method. Therefore, we believe that disen-
tangling the integrated representation is beneficial for improving
the performance of downstream tasks. The essential reason is that
disentangling can extract some task-independent information.

Compared with other contrastive learning-based methods, we
find that using only consistent representations can achieve satis-
factory results in clustering and classification tasks. At the same
time, we also find that adding some specificity information appro-
priately can further improve the performance of downstream tasks.
For example, both our method and Multi-VAE [41] concatenate the
consistent representation and view-specific representations into
one. We believe that this paradigm helps the model to process the
information for the required part of the downstream tasks.

In the comparison results between our method and the end-to-
end disentangling method (Multi-VAE [41] and MIB [8]), we find
that as the complexity of data (quantity and dimension) increases,
it becomes increasingly difficult to disentangle the consistency and
specificity simultaneously from the comprehensive representation.
In contrast, our method becomes more prominent in reducing the
complexity of disentangling. These results confirm our observation
that the boundary between multi-view consistency and specificity
becomes unclear in the unsupervised setting. Therefore, obtaining
one part of the information can improve the quality and reduce the
difficulty of disentangling.

4.6 Ablation Study
We conducted a comprehensive ablation study on Edge-FMNIST,
including the proposed method without pretext task L𝑖𝑛𝑠 , the pro-
posed method without the pseudo-label prediction L𝑐𝑙𝑢 , and the
proposed method without disentangling module L𝑠𝑝𝑐 . We com-
pared these components with our complete method, and the results
are shown in Table 4. One intuitive result is that using the disentan-
gling module can improve the performance of the model, with 2.72%
(73.06%− 70.34%) increase in terms of𝐴𝐶𝐶𝑐𝑙𝑢 metric. Additionally,
we find that without L𝑖𝑛𝑠 , the pseudo-label prediction cannot work
independently, leading to poor results. At the same time, when only
the disentangling module is used, its performance is relatively poor.
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Figure 3: (a) Parameter sensitivity analysis of our method’s
performance to changes in the dimensionality of 𝜇 and 𝜎 and
the hyperparameter 𝜆𝑑𝑖𝑠 . (b) The effect of varying batch size
and number of training epochs on clustering performance.

Table 4: Components analysis on the E-FMNIST dataset.

L𝑖𝑛𝑠 L𝑐𝑙𝑢 L𝑠𝑝𝑐 ACC𝑐𝑙𝑢 NMI ARI ACC𝑐𝑙𝑠 F-score

✓ ✓ ✓ 73.06 70.39 60.44 85.19 84.88

✓ ✓ 49.34 50.11 42.40 80.46 78.39
✓ ✓ 31.77 27.19 24.38 51.06 49.37

✓ 37.15 30.22 27.43 63.84 62.10

✓ 47.48 47.14 31.29 80.09 80.06
✓ 12.81 9.57 2.05 10.05 10.05

✓ ✓ 70.34 65.82 57.19 83.62 80.16

This suggests that our method heavily relies on the quality of con-
sistency, and the higher the quality of the consistent representation,
the better the quality of disentangling.

4.7 Parameter Analysis
We conducted a hyperparameter analysis of the proposed method
on the Edge-FMNIST dataset, including the dimensionality of 𝜇 and
𝜎 , 𝜆𝑑𝑖𝑠 , batch size, and training epochs, as shown in Figure 3. Ac-
cording to the results in Figure 3(a), we find that the dimensionality
of 𝜇 and 𝜎 range from 10 to 15, and 𝜆𝑑𝑖𝑠 range from 0.01 to 0.05
can achieve better results. the dimensionality of 𝜇 and 𝜎 too low
will lead to insufficient representation, while too high will produce
redundant representation. 𝜆𝑑𝑖𝑠 is the penalty coefficient of the dis-
entanglement loss L𝑑𝑖𝑠 , and if it is too low, disentangling may not
be sufficient, while if it is too high, the model may obtain trivial
solutions. On the other hand, as shown in Figure 3(b), with the
increase of batch size and epochs, the performance of the proposed
method will also increase. We believe that increasing training time
will be more beneficial when the batch size is less than 512.

4.8 Visualization
We visualize all the representations of the proposed method on
the Edge-MNIST dataset in the presented results, as shown in Fig-
ure 4 and Figure 5. In Figure 4, we use t-SNE [31] to visualize
the consistent representation of Multi-VAE [41] and our method,



MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Guanzhou Ke, et al.

Consistent representations 𝑆 View-specific representations 𝑃(") View-specific representations 𝑃($)

M
ul
ti-
VA
E

O
ur
s

[4
1]

Figure 4: Visualization of representations using t-SNE [31] on the Edge-MNIST dataset. The top row displays the representations
of Multi-VAE [41], while the bottom row shows the representations obtained by our proposed method. The leftmost column
corresponds to the consistent representation 𝑆 , while the subsequent two columns display the view-specific representations
𝑃 (1) and 𝑃 (2) of two different views, respectively.

(a) 𝑃(") width (0-9) (b) 𝑃($) angle (0-9) (c) digit 7 width (d) digit 1 angle

Figure 5: Visualization of disentangled representations: (a)
Width variation of view-specific representation 𝑃 (1) for dif-
ferent digits; (b) Angle variation of view-specific representa-
tion 𝑃 (2) for different digits; (c) Width variation of specific
digit “7” in both views; (d) Angle variation of specific digit
“1” in both views.

and view-specific representations. We can see that the consistent
representation extracted by ourmethod is more compact thanMulti-
VAE [41]. Furthermore, in the view-specific space, we find that the
specificity extracted by our method can also be divided into specific
attribute regions. For example, in the view-specific representation
𝑃 (1) , we can see that there is a significant angle change for the digit
“1” when the value of the x-axis changes from 0.6 to 1.0. In addition,
we show the change of digit width and angle in Figure 5. Thanks
to our disentanglement method, we can generate data with specific
attributes and specific categories, such as digits “1” with different

angle variations and digits “7” with different widths. The above
results indicate that our disentanglement method can make multi-
view representations have good interpretability and compactness.

5 CONCLUSION
In summary, we propose a novel two-stage disentanglementmethod
that mines multi-view consistency by maximizing the transforma-
tion invariance and clustering consistency, and mines specificity
by minimizing the mutual information between the consistent and
comprehensive representations. Our method achieved superior clus-
tering and classification performance on four datasets, and the ab-
lation studies demonstrated the effectiveness of our disentangling
module in enhancing the expressive power of concatenated repre-
sentations. Moreover, the interpretability and compactness of both
consistency and specificity obtained by our method were demon-
strated through visualization results. In future work, we plan to
extend our method to the incomplete-view scenario, as we have
observed that our method can effectively generate specific views
and help predict and restore missing views in such scenarios.
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