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Abstract—With the development of big data, deep learning has
made remarkable progress on multi-view clustering. Multi-view
fusion is a crucial technique for the model obtaining a common
representation. However, existing literature adopts shallow fusion
strategies, such as weighted-sum fusion and concatenating fusion,
which fail to capture complex information from multiple views.
In this paper, we propose a novel fusion technique, entitled
contrastive fusion, which can extract consistent representations
from multiple views and maintain the characteristic of view-
specific representations. Specifically, we study multi-view align-
ment from an information bottleneck perspective and introduce
an intermediate variable to align each view-specific representa-
tion. Furthermore, we leverage a single-view clustering method
as a predictive task to ensure the contrastive fusion is working.
We integrate all components into an unified framework called
CONtrAstive fusion Network (CONAN). Experiment results on
five multi-view datasets demonstrate that CONAN outperforms
state-of-the-art methods. Our source code will be available soon
at https://github.com/guanzhou-ke/conan.

Index Terms—Clustering, multi-view fusion, contrastive learn-
ing

I. INTRODUCTION

In real-world scenarios, data are frequently represented as
multiple views or modalities. For example, various descriptors
may characterize an image, such as SIFT [1] or histograms of
oriented gradients (HoG) [2]. Multi-view learning is a promis-
ing way to obtain good representations from multiples views.
Due to a large amount of unlabeled data in the real world,
unsupervised multi-view learning, e.g., multi-view clustering,
has attracted the attention of the machine learning community.

The significant difference between multi-view and single-
view clustering is that the former needs to extract the valuable
representation shared from multiple views. It means that fusion
is a crucial technique for multi-view clustering. Previous
works focus on some simple fusion strategies [3], such as
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weighted-sum fusion [4], [5] and concatenating fusion [6]—-[8].
These methods are difficult to capture high-level semantics
from multiple views because they ignore the relationship
of common representations and view-specific representations
during the fusion process. Another fusion technique, neural
network fusion, focuses on capturing the latent structure shared
from multiple views [9], [10]. It can capture a more complex
structure than the former but could harm the view-specific
representations during the fusion process, called over-fusion.
To against over-fusion, they employ Generative Adversarial
Nets (GAN) to the constraint condition [11] to maintain
view-specific representations [4], [6], [12]. However, the trick
brings an underlying risk: inconsistent optimization objective.
We observe that clustering focuses on extracting class-level
information, but GAN aims to reconstruct original space from
pixel-level information. It leads to the network being forced
to learn some useless information for predicting labels during
the optimization process.

In this paper, we identify the major challenge in multi-
view clustering fusion: can we extract harmonious common
representations from each view under maintaining the view-
specific representations? The simple idea is that we could
introduce a new representations space to align each view-
specific representation. For maintaining the independent rep-
resentation space of each view, we block the interaction of
view-specific representations. We study this idea from an
information bottleneck perspective [13]. Inspired by previous
works [14], [15], we can introduce an additional intermediate
variable (representation space) to align each view-specific
representation. We found that the contrastive learning method
can be a suitable alignment method. Hence, we leverage the
contrastive learning method [16] to improve multi-view fusion
called contrastive fusion, discussed in section III.

However, we found that the contrastive fusion component
cannot work well because it lacks the objective of extracting
task-relevant information. In other words, it cannot identify
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what a good direction for alignment view-specific represen-
tations is. According to the suggestion of [15], we observe
that a suitable predictive task, e.g., the single-view clustering
method, can help the contrastive fusion component to extract
harmonious common representations, discussed in section
III-C. To this end, we integrate these components into a unified
framework, namely CONtrAstive fusion Network (CONAN).
The main contributions of this paper are summarized as
follows:

1) We propose a novel fusion technique, which extracts
common representation from view-specific representa-
tions and preserves the independence of each view space.

2) We integrate all components into an unified framework,
as shown in Fig.1. The framework we proposed is more
light-weighted than previous works [4], [6].

II. RELATED WORK

In this section, we give a brief summary of the existing
work on contrastive learning and multi-view clustering.

A. Contrastive Learning

Contrastive learning [16] is one of the unsupervised methods
that have developed rapidly in recent years, especially in visual
representations [17]-[19]. Contrastive learning aims to group
the positive sample pairs and repulse the negative sample pairs,
where the positive pair denotes the different augmentation
views of an image. The negative pair is the augmentation view
of other images. There is some literature to study the relation
of between contrastive learning and multi-view learning from
information bottleneck theory [14], [15], [20]. In [15], the
authors proposed contrastive multi-view coding (CMC), which
obtains robust representations by the multiple views augmen-
tation of an image (more than two views). They found that the
robustness of representations can be improved by increasing
the number of views. On the other hand, the literature [14],
[20] found that it can help extract consistent information by
applying contrastive methods on multiple views. Based on
the previous works, we introduce an intermediate variable
and apply a contrastive method between this variable and
each view-specific representations, called contrastive fusion.
Intuitionally, the view-specific representations get aligned in
the new representation space. The advantage of this is that
it does not damage the view-specific representations and can
achieve multi-view fusion.

B. Multi-view Clustering

The multi-view clustering taxonomy involves two cate-
gories: traditional methods and deep learning methods. Tra-
ditional methods rely on statistical theory, e.g., multi-kernel
learning methods [21], [22], where the characteristics of
different views can be non-linearly mapped into a common
representation. Nevertheless, these methods require selecting
the appropriate kernel for each view carefully. Subspace-
based methods [23]-[25] project the multi-view data into
a low-dimensional shared subspace to obtain the standard
representation. There are also methods exploiting non-negative
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matrix factorization [26] and graph-based models [27]. These
statistical models have a common drawback, as they cannot
extract complex structures within the data. Therefore, there
have been many deep methods combined with traditional
methods, such as [9], [28], [29]. These extract higher semantic
features through neural networks and then apply on these
features statistical models to extract a common representation.

In recent years, the complete deep learning methods have
been proposed, such as [4], [6]-[8], [12]. These methods have
a more vital ability to express a data structure, obtaining higher
performance on many benchmark datasets. The literature [4],
[6], [12] adopts GAN as multi-view fusion constraint to pre-
vent over-fusion. It may be beneficial in generative tasks, but
degenerate solutions will appear in multi-view clustering tasks.
Using GAN constraints seems to learn discriminative features,
but it still requires the network to learn pixel-level features.
This phenomenon we call inconsistent optimization objective,
we mentioned before. Compared with previous methods, our
proposed contrastive fusion does not require the network to
learn pixel-level features, and it belongs to the same kind as
clustering, i.e., discriminative model.

III. METHOD

Our goal is to group a set of n data points consisting of
V views D = {X' X? ...,X"} into ¢ clusters, where X" €
R™*4v denotes the samples of the dimension d,, from the v-th
views.

A. Networks Architecture

The proposed approach, CONAN, consist of V view-
specific encoder networks e, (+), a fusion network f(-), a small
neural network projection head p(-), and a clustering head g(-),
as illustrated in Fig.1.

o View-specific encoder networks e, (-) that extracts view-
specific representations(vectors) i from each view data
point, i.e., hY e,(Xy). CONAN allows various
forms of the network architecture as encoder, e.g., Fully-
Connected Networks (FCNs) or Convolution Neural Net-
works (CNNs), according to the data type. In practice, we
adopt CNNss to process image data and FCNs for vector-
liked data.

o A fusion network f(-): it fusions concatenating vectors
h = cat(h?, ..., hY) to obtain the common representation
z = f(h). We adopt two fully-connected layers with
ReLU as fusion network. The major advantage of our
fusion network is that can fit better any complex function
[30] than the weighted-sum method.

o A projection head p(-): it maps representations to space
where contrastive loss is applied. We adopt the same
setting in previous work [17] to build our projection head.
We discuss its details in the next section.

o A clustering head g¢(-): it assigns each data point to a
compact space according to z, in other words, we can
obtain cluster labels from it, i.e., Y = g(z). This com-
ponent could adopt any single-view clustering methods,
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such as Deep Divergence Clustering (DDC) [31] or Deep
Embedding Clustering (DEC) [32].

In summary, our proposed framework, CONAN, is more
light and flexible than the previous AE-Based [9], [29], [33], or
GAN-Based [4], [6], [12] framework. Furthermore, CONAN
adapts any online clustering methods thanks to the common
representation z we obtained by contrastive fusion network.

______ 2 >max I(z;hY)

p0)

cat.

h2 h i () Clustering
() :
=7 :

___________ > max I(z; h?)
view 2 )

Fig. 1. Illustration of CONAN. It consist of V' view-specific encoder networks
ey(-) to obtain view-specific representations hV, a fusion network f(-) to
obtain the common representation z via fusion the concatenating vectors h,
a small neural network projection head p(-) to map representations to space
where contrastive loss is applied, and a clustering head g(-) to obtain soft
assignment Y = g(z). I(-;-) represent mutual information.

B. Contrastive Fusion

Our goal is to extract the task-relevant information (con-
sistency) shared between view-specific representations h and
discard the task-irrelevant information. For convenience, we
discuss two views situation, but it can be easily extended to
multiple view cases. According to the conclusion of previous
works [14], [15], [20], we can formula our goal from the
information bottleneck perspective as the following definition:

I(X';h?) = I(X*h?) — I(X*h?|X") (1
I(X%h') = (XY h') — 1(X!; ht|X?) )
—— N——

task-relevant task-irrelevant

It is benefit for extracting the task-relevant information
when both maximizes (1) and (2), but we cannot maximize
them directly in unsupervised setting. According to the con-
clusion of the literature [14], however, we can minimize the
second term in (1) and (2) to maximize the lower bound on
the mutual information I(X';h?) and I(X2;h'). We discuss
our strategy to minimize the conditional mutual information
in next section.

According to above theory, we introduce an intermediate
variable called z which can both maximize I(z;h') and
I(z;h?). Hence, we can rewrite the original definition as
following:

I(X':z) = I(X?;2) — (X% 2|X") 3)
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where z is the common representation what we need. We
call the process of maximization I(z;h') and I(z;h?) as
contrastive fusion, and then we focus on how to measure
z and each h, ie., maxI(z;h"). Inspired by contrastive
learning methods [17], [18], we introduce cosine similarity
to compute the score between z and h?, i.e., sim(z,h")
z'h"/||z||||h||. Then, we extend the loss function in [17] to
multiple views setting:

exp(sim(p(z:), p(hf))/7)

Ipale (e exp(sim(p(zz%p(h}é))/&))
where p(-) is a projection head, (4, j) is a pair positive exam-
ples, 1xq € {0,1} denotes an indicator function evaluating
to 1 if k #£ 4, and 7 represents a temperature parameter which
we adopt optimal setting as 7 = 0.1 suggested by [17] in
our experiments. According to the conclusion of [15], we can
maximize I(z;h") by minimization the contrastive loss.

On the other hand, there is another version contrastive
objective which does not require negative samples, called
SimSiam [18], as following:

Esz’mclr _
contrast —

v
Z log

v=1

\%4
=y _%(szm(p(ZL q(h") 4 sim(p(h”), q(2))

v=1

4)

where ¢(-) is a prediction head that consists of two fully-
connected layers, note that the output vectors of ¢(-) can be
treated as constant, which means that the output vectors of
g(-) cannot receive any gradient during back-propagation. It
seems that is the key trick of [18] to achieve state-of-the-
art performance, called stop gradient. We study the impact
of fusion via using two different objectives in section IV.
According to the suggestion of ablation study in section IV,
we adopt the default contrastive objective as (4) in CONAN.

stmsiam
contrast

C. Loss Function

In this section, we discuss our solution to minimize
I(X?;2z|X!) in (3). In an unsupervised setting, a common
solution is to reconstruct the original data space what auto-
encoder does. The reconstruction try to minimize I(X;z|X),
where X is required to approximate the original data space
X. From a high level, the reconstruction or other downstream
tasks, e.g., clustering or classification, can be roughly seem
as a predictive learning task [15], [20]. According to these
assumptions [15], [20], we can formula a general definition to
instead 7(X?;z|X1), as following:

I[(X2;2|T) = (X% 2|X") + €info (6)

where T' denotes an alternative predictive task, and €, r, is
the gap between 7' and the original predictive task. However,
the choice of a suitable predictive task is still an open question
in unsupervised learning. We empirically chose the online
clustering task as the alternative predictive task to maximize
(3). There are two common clustering tasks we used in
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this work, called DDC [31] and DEC [32]. The DDC is a
divergence-based clustering method that uses Cauchy-Schwarz
divergence (CS-divergence) [34] to enforce cluster separability
and compactness. Another one, DEC, is a KL divergence-
based method that use the Student’s t-distribution as a kernel
to measure the similarity between hidden representation z; and
centroid p;. Next, we describe the loss function of DDC and
DEC, respectively.

The loss function of DDC consists of three terms as shown
in the following:

k—1 —k ol Koy
Dic1 2jsi WQ%K%
triu( AAT)

T
m; Km;

A\ /miTKmimJTij

where A denotes the cluster assignment matrix, «; is the
i-th column of matrix A; K denotes kernel similarity ma-
trix computed by ki; = exp(—|z; — 2;]|?/(20)?), and o
is Gaussian kernel bandwidth, default as 0.15; triu(AAT)
denotes the strictly upper triangular elements of AAT; m,;j =
exp(||a; — e;]|*) where e; is corner j of the standard simplex
in R¥.
The loss function of DEC as shown in the following:

Ladge =
_|_

D S S @)

Nk -
Lice =Y ZPilegp”

i=1 j=1 i

®)

where ¢;; denotes the probability of assignment data point ¢
to cluster j, and it compute by:

(1+ | — 51%/8)
SB[l — w12/8) %

B+1
2

ij =

and
pii = Q?J/Zz dij
@ X iy

According to the suggestion of DEC, we pass the whole
dataset through the initialized view-specific encoders to get
common representation z and then perform standard k-means
algorithm in z to obtain k initial centroids {; };?:1.

Finally, we integrate all components into an unified frame-
work, namely CONAN. As default, we adopt DDC as the
predictive task and (4) as the contrastive measurement during
fusion view-specific representations, as shown in the follow-
ing:

Leonan = Lade + )\ESimclr

contrast

©))

where \ is a trade-off parameter to limit the contrastive loss
term too large. As shown in section IV, we found that A = 0.01
is the optimal value for all experiments. Concretely, Algorithm
1 summarizes the proposed method.
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Algorithm 1: CONAN pseudocode, PyTorch-style

2cific encoder.

+ o
o

H=

# 12
for x1, ., Xv 1in dataloader:
# 1: obtain view-specific
re >sentations
hl,...,hv = el (x1),...,ev(xvV)
cat (hl,...,hv) # n-by—(vxd)
p 2: fusion view-specific
esentat
sof k uster
g(z)
compute the joint loss.
logits) + A % C(z, hs)
back-propaga oss and
# late networks’ ¢ 5 by Adam
L.backward ()
update (e, f, g, p)
def C(z, hs) # compute contrasti 1
hs = split (hs) # to
zp = p(z) # projection.
hps = [p(h) for h in hs]
# compute zg = g(z) and hgs = [g(h)
# for h in hs if used simsiam loss.
subloss = 0.
# compute zp and each hp
for hp in hps:
subloss += 12 (zp, hp)

return subloss

IV. EXPERIMENTS

A. Dataset

We evaluate CONAN and other competitors using five well-
known multi-view datasets containing raw image and vector
data, and report the dataset description in Table I. There are:

o Edge-MNIST (E-MNIST) [35], which is a large-scale
and widely-used benchmark dataset consisting of 70,000
handwritten digit images with 28 x 28 pixels. The views
contain the original digits and the edge-detected version,
respectively. In unsupervised setting, we only need the
training set to evaluate models.

o Edge-FMNIST (E-FMNIST) [36], which is a more com-
plex dataset than standard MNIST consisting of 28 x 28
grayscale images of clothing items. We synthesize the
second view by running the same edge detector used to
create Edge-MNIST.

o COIL-20 [37], and COIL-100 [38], which depicts from
different angles containing grayscale images of 20 items
and RGB images of 100 items, respectively. We create a
three-view dataset by randomly grouping the images for
an item into groups of three.
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o PASCAL VOC 2007 (VOC) [39]. We use the multi-view
version provided by [40], which consists of GIST features
and word frequency counts from manually tagged natural

images.
TABLE I
DATASET DESCRIPTION
Dataset #samples  #view  #class #shape”
Edge-MNIST 60,000 2 10 1 x 28 x 28
Edge-FMNIST 60,000 2 10 1 x 28 x 28
COIL-20 480 3 20 1 x 128 x 128
COIL-100 2,400 3 100 3 x 128 x 128
voC 5649 2 20 512, 399

*Single shape denotes that the input dimensionality is same for all views.

B. Baseline Models

We evaluate our framework to an extensive set of baseline
models, which represent state-of-the-art for multi-view cluster-
ing: 1) Deep Canonical Correlation Analysis (DCCA) [28]; 2)
Deep Canonically Correlated Auto-encoders (DCCAE) [29];
3) Deep Multi-modal Subspace Clustering (DMSC) [9]; 4)
Deep Adversarial Multi-view Clustering (DAMC) [6]; 5) End-
to-end Adversarial attention network for Multi-modal Clus-
tering (EAMC) [4]; 6) Autoencoder in autoencoder networks
(Ae?-Nets) [33]. Furthermore, in order to demonstrate CO-
NAN can improve the clustering performance compared with
the single-view setting. We use the standard spectral clustering
algorithm [41] to conduct on each view and the concatenated
view, and then we report the best result in spectral clustering
(SC-best).

C. Implementation Details

We implement CONAN and the competitor non-linear meth-
ods on the PyTorch [42] platform, running on CentOS Linux
7 utilizing two NVIDIA Quadro P5000 Graphics Processing
Units (GPUs) with 16 GB memory size. We train our model
for 100 epochs, using the Adam optimization technique [43]
with default parameters, and using Cosine Annealing learning
rate scheduler [44] with an initial learning rate of 0.001. We
leverage the grid search to find an optimal trade-off parameter
A range from 1072 to 1. We observe that sets too small
value to A would curb the fusion process, while too large
is harmful to the predictive task. Hence, we set A to 0.01
in all experiments. For Edge-MNIST and Edge-FMNIST, we
adopt CNN, proposed in [9] as the view-specific encoder.
We set the batch size of the training dataset to 128 and the
dimensionality of hidden representation, i.e., hV and z, to 288.
For COIL-20 and COIL-100, we adopt AlexNet [45] as the
view-specific encoder. We set the batch size to 24 and the
hidden representation to 1024. Note that the suggestion of
input shape in [45] is 3 x 144 x 144, but we observe that
it also work well on the COIL-(20/100) dataset. For VOC, we
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TABLE II
CLUSTERING RESULTS ON FIVE BENCHMARK DATASETS.

Dataset E-MNIST E-FMNIST COIL-20 COIL-100 vOC

Metrics ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
SC-Best® - - - - - - - - 402 411
DCCAP 476 443 426 419 - - - - 397 425
DCCAE® 508 475 458 436 - - - - 416 443
DMSC 653 .614 .524 518 .651 .720 .483 .697 .541 .538
DAMC .646 .594 495 487 .672 .729 .526 .701 .560 .552
Ae2Nets .537 463 410 392 .717 812 .541 .753 571 .571
EAMC 668 .628 .541 .622 .690 .753 .518 .680 .607 .615
CONAN 905 .861 .592 .552 .725 803 .556 .774 .621 .621

“We cannot apply spectral clustering on the dataset except VOC because
the large-scale or high-dimensionality dataset occupies many computation
resources. © DCCA and DCCAE can only apply on two views dataset.

adopt three fully-connected layers with ReLLU as the view-
specific encoder, i.e., x-512-512-256, where x denotes the
input dimensionality. The batch size is set to 100. Due to the
instability of unsupervised, we train CONAN 20 times and
report the results from the run resulting in the lowest value of

9).
D. Evaluation Metrics

The clustering performance is measured using two stan-
dard evaluation matrices, i.e., clustering Accuracy (ACC) and
Normalized Mutual Information (NMI), where a higher value
indicates better performance. For further details on these
evaluation metrics, the reader is referred to [46]. It should
be noted that the validation process of the clustering methods
involves only the cases where ground truth labels are available.

E. Compared with Baseline Models

We evaluate our model and baseline models on five well-
known datasets and report the ACC and NMI results in Table
II. The results illustrate that our model can have a significant
improvement compared to baseline models. It is worth noting
that the proposed method manages a performance improve-
ment of 23.7%(0.905 — 0.668) and 23.2%(0.861 — 0.628)
against the second-best method in terms of ACC and NMI
metrics, respectively. We believe that the contrastive fusion
we proposed outperforms the shallow fusion methods, such
as concatenating (DAMC) and weight-sum (EAMC). On the
other hand, our method is a friendly-resource algorithm com-
pared with the self-expression layer in DMSC.

FE. The Impact of Different Contrastive Loss

Contrastive measurement is a crucial component of our
method. According to the conclusion of the state-of-the-art
for contrastive learning, [18], there are two different type
measurements, i.e., negative samples needed (£:™cr ) and

positive samples only (L£3msiam) " that may lead to different
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TABLE III
THE IMPACT OF DIFFERENT CONTRASTIVE LOSS ON E-FMNIST AND
COIL-20/100 DATASET.

Liimilese  Loomiialt  ACC - NMI
2 - - 0.508  0.492
§ v - 0592 0.552
% - v 0.603  0.551
[84]
5] - - 0.539  0.651
g v - 0725 0.803
© - v 0.629  0.697
g - - 0.389  0.679
= v - 0556  0.774
8 - v 0407  0.698

performance during the fusion process. Hence, we study
the representative method of two kind measurements on E-
FMNIST and COIL-20/100 dataset, as shown in Table III.
The results illustrate that contrastive fusion can significantly
improve the performance of clustering. Furthermore, we can
see that there are no overwhelming results. Using £57mc . or
Lsimsiam in (9) achieve almost the same performance on the
E-FMNIST dataset, but the former is almost entirely beyond
the latter on the COIL-20/100 dataset.

Our conclusion is that because contrastive learning relies
on the quality (data augmentation) and quantity of the dataset
[47], both can achieve almost the same performance on
the E-FMNIST dataset with sufficient quantity and quality.
Conversely, if the data quality and quantity are insufficient, the
performance depends on establishing negative samples, which
is particularly obvious on COIL-100.

G. The Impact of Different Predictive Tasks

TABLE IV
THE IMPACT OF DIFFERENT PREDICTIVE TASKS ON E-FMNIST.

model Eddc ﬁdec ACC NMI
Random - - 0.105  0.001
:<ZC - - 0.117  0.002

% v - 0.592 0.552

© - v 0.494 0.486

We study the different predictive tasks on E-FMNIST in
order to understand the importance of a good predictive task
to our model, the results as reported in Table IV. We found
that it would be close to a random model if we removed the
clustering head. It is in line with our conclusion in section
[I-C. In addition, there is a significant gap between L;4. and
Lgec- The results illustrate that a suitable predictive task is
crucial to minimize (6). Nevertheless, the choice of predictive
task is still an open question.
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H. Visualization of The Contrastive Fusion

Before Fusion

Epoch 5 Epoch 15 Epoch 25 Epoch 100

Epoch 1

Fig. 2. Visualization of representations on the E-MNIST dataset before (first
row) and after fusion (second row) using T-SNE at epoch 1st, 5th, 15th, 25th,
and 100th.

We demonstrate the change of representations before and
after contrastive fusion on the E-MNIST dataset, as shown
in Fig.2. For convenience, we randomly choose 1K samples
projected to 2-D using T-SNE [48]. We can see that the view-
specific representations h' and h? always keep their unique
characteristic. On the other hand, the common representation
z becomes more separate and compact with increasing the
training epoch. The results illustrate that contrastive fusion
can improve the clustering performance and does not harm
the view-specific representation.

V. CONCLUSION

In this work, we proposed a contrastive fusion strategy that
aligns view-specific representation into a new representation
space (common representations). We apply the existing single-
view online clustering method to help the contrastive fusion
network extracting valuable information from multiple views.
Experimental results on five real-world datasets demonstrate
the contrastive fusion improves the quality of unsupervised
representations.
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